Feature pyramid attention network for audio-visual scene classification

IF 8.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Liguang Zhou, Yuhongze Zhou, Xiaonan Qi, Junjie Hu, Tin Lun Lam, Yangsheng Xu
{"title":"Feature pyramid attention network for audio-visual scene classification","authors":"Liguang Zhou,&nbsp;Yuhongze Zhou,&nbsp;Xiaonan Qi,&nbsp;Junjie Hu,&nbsp;Tin Lun Lam,&nbsp;Yangsheng Xu","doi":"10.1049/cit2.12375","DOIUrl":null,"url":null,"abstract":"<p>Audio-visual scene classification (AVSC) poses a formidable challenge owing to the intricate spatial-temporal relationships exhibited by audio-visual signals, coupled with the complex spatial patterns of objects and textures found in visual images. The focus of recent studies has predominantly revolved around extracting features from diverse neural network structures, inadvertently neglecting the acquisition of semantically meaningful regions and crucial components within audio-visual data. The authors present a feature pyramid attention network (FPANet) for audio-visual scene understanding, which extracts semantically significant characteristics from audio-visual data. The authors’ approach builds multi-scale hierarchical features of sound spectrograms and visual images using a feature pyramid representation and localises the semantically relevant regions with a feature pyramid attention module (FPAM). A dimension alignment (DA) strategy is employed to align feature maps from multiple layers, a pyramid spatial attention (PSA) to spatially locate essential regions, and a pyramid channel attention (PCA) to pinpoint significant temporal frames. Experiments on visual scene classification (VSC), audio scene classification (ASC), and AVSC tasks demonstrate that FPANet achieves performance on par with state-of-the-art (SOTA) approaches, with a 95.9 F1-score on the ADVANCE dataset and a relative improvement of 28.8%. Visualisation results show that FPANet can prioritise semantically meaningful areas in audio-visual signals.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"10 2","pages":"359-374"},"PeriodicalIF":8.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12375","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12375","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Audio-visual scene classification (AVSC) poses a formidable challenge owing to the intricate spatial-temporal relationships exhibited by audio-visual signals, coupled with the complex spatial patterns of objects and textures found in visual images. The focus of recent studies has predominantly revolved around extracting features from diverse neural network structures, inadvertently neglecting the acquisition of semantically meaningful regions and crucial components within audio-visual data. The authors present a feature pyramid attention network (FPANet) for audio-visual scene understanding, which extracts semantically significant characteristics from audio-visual data. The authors’ approach builds multi-scale hierarchical features of sound spectrograms and visual images using a feature pyramid representation and localises the semantically relevant regions with a feature pyramid attention module (FPAM). A dimension alignment (DA) strategy is employed to align feature maps from multiple layers, a pyramid spatial attention (PSA) to spatially locate essential regions, and a pyramid channel attention (PCA) to pinpoint significant temporal frames. Experiments on visual scene classification (VSC), audio scene classification (ASC), and AVSC tasks demonstrate that FPANet achieves performance on par with state-of-the-art (SOTA) approaches, with a 95.9 F1-score on the ADVANCE dataset and a relative improvement of 28.8%. Visualisation results show that FPANet can prioritise semantically meaningful areas in audio-visual signals.

Abstract Image

用于视听场景分类的特征金字塔关注网络
视听场景分类(AVSC)是一项艰巨的挑战,因为视听信号具有错综复杂的时空关系,而视觉图像中的物体和纹理又具有复杂的空间模式。近期研究的重点主要围绕从不同的神经网络结构中提取特征,却无意中忽略了获取视听数据中具有语义意义的区域和关键组成部分。作者提出了一种用于视听场景理解的特征金字塔注意网络(FPANet),它能从视听数据中提取具有语义意义的特征。作者的方法使用特征金字塔表示法构建声音频谱图和视觉图像的多尺度分层特征,并使用特征金字塔注意模块(FPAM)定位语义相关区域。采用维度对齐(DA)策略对齐多层特征图,采用金字塔空间注意力(PSA)在空间上定位重要区域,采用金字塔通道注意力(PCA)精确定位重要的时间帧。在视觉场景分类(VSC)、音频场景分类(ASC)和AVSC任务上的实验表明,FPANet的性能与最先进的(SOTA)方法相当,在ADVANCE数据集上的F1分数为95.9,相对提高了28.8%。可视化结果表明,FPANet 可以对视听信号中具有语义意义的区域进行优先排序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CAAI Transactions on Intelligence Technology
CAAI Transactions on Intelligence Technology COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
11.00
自引率
3.90%
发文量
134
审稿时长
35 weeks
期刊介绍: CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信