Fahad Salman, Abhisri Ramesh, Thomas Jochmann, Mirjam Prayer, Ademola Adegbemigun, Jack A. Reeves, Gregory E. Wilding, Junghun Cho, Dejan Jakimovski, Niels Bergsland, Michael G. Dwyer, Robert Zivadinov, Ferdinand Schweser
{"title":"Sensitivity of Quantitative Susceptibility Mapping for Clinical Research in Deep Gray Matter","authors":"Fahad Salman, Abhisri Ramesh, Thomas Jochmann, Mirjam Prayer, Ademola Adegbemigun, Jack A. Reeves, Gregory E. Wilding, Junghun Cho, Dejan Jakimovski, Niels Bergsland, Michael G. Dwyer, Robert Zivadinov, Ferdinand Schweser","doi":"10.1002/hbm.70187","DOIUrl":null,"url":null,"abstract":"<p>Quantitative susceptibility mapping (QSM) is an advanced MRI technique for assessing iron, calcium, and myelin tissue levels based on magnetic susceptibility. QSM consists of multiple processing steps, with various choices for each step. While QSM is increasingly applied in neurodegenerative disease research, its reproducibility and sensitivity in detecting susceptibility changes across groups or over time, which underpin the interpretation of clinical outcomes, have not been thoroughly quantified. This study aimed to evaluate how choices in background field removal (BFR), dipole inversion algorithms, and anatomical referencing impact the detection of changes in deep gray matter susceptibility. We used aging-related changes in brain iron, established in earlier foundational studies, as a surrogate model to test the sensitivity and reproducibility of 378 different QSM pipelines toward the detection of longitudinal susceptibility changes in a clinical setting. We used 10-year follow-up data and scan-rescan data of healthy adults scanned at 3T. Our results demonstrated high variability in the sensitivity of QSM pipelines toward detecting susceptibility changes. While most pipelines detected the same over-time changes, the choice of the BFR algorithm and the referencing strategy influenced reproducibility error and sensitivity substantially. Notably, pipelines using RESHARP with AMP-PE, HEIDI, or LSQR inversion showed the highest overall sensitivity. The findings suggest a strong impact of algorithmic choices in QSM processing on the ability to detect physiological changes in the brain. Careful consideration should be given to the pipeline configuration for reliable clinical outcomes.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 6","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70187","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70187","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Quantitative susceptibility mapping (QSM) is an advanced MRI technique for assessing iron, calcium, and myelin tissue levels based on magnetic susceptibility. QSM consists of multiple processing steps, with various choices for each step. While QSM is increasingly applied in neurodegenerative disease research, its reproducibility and sensitivity in detecting susceptibility changes across groups or over time, which underpin the interpretation of clinical outcomes, have not been thoroughly quantified. This study aimed to evaluate how choices in background field removal (BFR), dipole inversion algorithms, and anatomical referencing impact the detection of changes in deep gray matter susceptibility. We used aging-related changes in brain iron, established in earlier foundational studies, as a surrogate model to test the sensitivity and reproducibility of 378 different QSM pipelines toward the detection of longitudinal susceptibility changes in a clinical setting. We used 10-year follow-up data and scan-rescan data of healthy adults scanned at 3T. Our results demonstrated high variability in the sensitivity of QSM pipelines toward detecting susceptibility changes. While most pipelines detected the same over-time changes, the choice of the BFR algorithm and the referencing strategy influenced reproducibility error and sensitivity substantially. Notably, pipelines using RESHARP with AMP-PE, HEIDI, or LSQR inversion showed the highest overall sensitivity. The findings suggest a strong impact of algorithmic choices in QSM processing on the ability to detect physiological changes in the brain. Careful consideration should be given to the pipeline configuration for reliable clinical outcomes.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.