Ontology-Based Digital Infrastructure for Data-Driven Glass Development

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ya-Fan Chen, Felix Arendt, Hansjörg Bornhöft, Andréa S. S. de Camargo, Joachim Deubener, Andreas Diegeler, Shravya Gogula, Altair T. Contreras Jaimes, Sebastian Kempf, Martin Kilo, René Limbach, Ralf Müller, Rick Niebergall, Zhiwen Pan, Frank Puppe, Stefan Reinsch, Gerhard Schottner, Simon Stier, Tina Waurischk, Lothar Wondraczek, Marek Sierka
{"title":"Ontology-Based Digital Infrastructure for Data-Driven Glass Development","authors":"Ya-Fan Chen,&nbsp;Felix Arendt,&nbsp;Hansjörg Bornhöft,&nbsp;Andréa S. S. de Camargo,&nbsp;Joachim Deubener,&nbsp;Andreas Diegeler,&nbsp;Shravya Gogula,&nbsp;Altair T. Contreras Jaimes,&nbsp;Sebastian Kempf,&nbsp;Martin Kilo,&nbsp;René Limbach,&nbsp;Ralf Müller,&nbsp;Rick Niebergall,&nbsp;Zhiwen Pan,&nbsp;Frank Puppe,&nbsp;Stefan Reinsch,&nbsp;Gerhard Schottner,&nbsp;Simon Stier,&nbsp;Tina Waurischk,&nbsp;Lothar Wondraczek,&nbsp;Marek Sierka","doi":"10.1002/adem.202401560","DOIUrl":null,"url":null,"abstract":"<p>The development of new glasses is often hampered by inefficient trial-and-error approaches. The traditional glass manufacturing process is not only time-consuming, but also difficult to reproduce with inevitable variations in process parameters. These challenges are addressed by implementing an ontology-based digital infrastructure coupled with a robotic melting system. This system facilitates high-throughput glass synthesis and ensures the collection of consistent process data. In addition, the digital infrastructure includes machine learning models for predicting glass properties and a tool for extracting patent information. Current glass databases have significant gaps in the relationships between compositions, process parameters, and properties due to inconsistent studies and nonconforming units. In addition, process parameters are often omitted, and even original literature references provide limited information. By continuously expanding the database with consistent, high-quality data, it is aimed to fill these gaps and accelerate the glass development process.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 8","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adem.202401560","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401560","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of new glasses is often hampered by inefficient trial-and-error approaches. The traditional glass manufacturing process is not only time-consuming, but also difficult to reproduce with inevitable variations in process parameters. These challenges are addressed by implementing an ontology-based digital infrastructure coupled with a robotic melting system. This system facilitates high-throughput glass synthesis and ensures the collection of consistent process data. In addition, the digital infrastructure includes machine learning models for predicting glass properties and a tool for extracting patent information. Current glass databases have significant gaps in the relationships between compositions, process parameters, and properties due to inconsistent studies and nonconforming units. In addition, process parameters are often omitted, and even original literature references provide limited information. By continuously expanding the database with consistent, high-quality data, it is aimed to fill these gaps and accelerate the glass development process.

Abstract Image

新玻璃的开发往往受制于低效的试错方法。传统的玻璃制造工艺不仅耗时,而且由于工艺参数不可避免的变化而难以复制。通过实施基于本体的数字基础设施和机器人熔化系统,可以解决这些难题。该系统有助于高通量玻璃合成,并确保收集一致的工艺数据。此外,数字基础设施还包括用于预测玻璃特性的机器学习模型和提取专利信息的工具。目前的玻璃数据库在成分、工艺参数和特性之间的关系方面存在很大差距,原因是研究不一致和单位不符合要求。此外,工艺参数经常被省略,甚至原始文献参考资料提供的信息也很有限。通过不断扩大数据库,提供一致的高质量数据,旨在填补这些空白,加快玻璃研发进程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信