Lautaro Rivera, Matthäus Davi Popov Pereira da Cunha, Rocío Jazmín Sabbatella, Samanta del Veliz, Gustavo Abel Abraham, Marina Uhart, Ana Agustina Aldana
{"title":"Nanofibrous GelMA-Based Scaffolds Support Human Adipose-Derived Mesenchymal Stem/Stromal Cell Adhesion, Viability, and Growth","authors":"Lautaro Rivera, Matthäus Davi Popov Pereira da Cunha, Rocío Jazmín Sabbatella, Samanta del Veliz, Gustavo Abel Abraham, Marina Uhart, Ana Agustina Aldana","doi":"10.1002/jbm.a.37914","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Drawing inspiration from the extracellular matrix (ECM), where fiber organization profoundly influences cell behavior, electrospun scaffolds have emerged as powerful tools for modulating cellular responses in vitro. While electrospinning enables the replication of ECM architecture, selecting suitable materials is paramount for effective cell adhesion and growth. In this study, we aimed to develop cost-effective scaffolds for human adipose-derived mesenchymal stromal cells (hAD-MSCs) using gelatin methacrylate (GelMA) blended with either polycaprolactone (PCL) or poly(ethylene glycol) dimethacrylate (PEGDMA). Through comparing randomly oriented and aligned fibers, we identified fiber direction as a critical factor in determining cell behavior. Surprisingly, we found that despite material hydrophobicity, the cells aligned with the fiber direction, highlighting the dominant influence of fiber alignment on cell spreading. This research underscores the importance of material selection and fiber orientation in engineering scaffolds for directing cell behavior in tissue regeneration applications.</p>\n </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37914","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Drawing inspiration from the extracellular matrix (ECM), where fiber organization profoundly influences cell behavior, electrospun scaffolds have emerged as powerful tools for modulating cellular responses in vitro. While electrospinning enables the replication of ECM architecture, selecting suitable materials is paramount for effective cell adhesion and growth. In this study, we aimed to develop cost-effective scaffolds for human adipose-derived mesenchymal stromal cells (hAD-MSCs) using gelatin methacrylate (GelMA) blended with either polycaprolactone (PCL) or poly(ethylene glycol) dimethacrylate (PEGDMA). Through comparing randomly oriented and aligned fibers, we identified fiber direction as a critical factor in determining cell behavior. Surprisingly, we found that despite material hydrophobicity, the cells aligned with the fiber direction, highlighting the dominant influence of fiber alignment on cell spreading. This research underscores the importance of material selection and fiber orientation in engineering scaffolds for directing cell behavior in tissue regeneration applications.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.