Sandro Dahlke, Annette Rinke, Matthew D. Shupe, Christopher J. Cox
{"title":"The Two Arctic Wintertime Boundary Layer States: Disentangling the Role of Cloud and Wind Regimes in Reanalysis and Observations During MOSAiC","authors":"Sandro Dahlke, Annette Rinke, Matthew D. Shupe, Christopher J. Cox","doi":"10.1002/asl.1298","DOIUrl":null,"url":null,"abstract":"<p>The wintertime central Arctic atmosphere comprises a radiatively clear and a radiatively opaque state, which are linked to synoptic forcing and mixed-phase clouds. Weather and climate models often lack process representations surrounding these states, but prior work mostly treated the problem as an aggregate of synoptic conditions, resulting in partially overlapping biases. Here, we disaggregate the Arctic states and confront ERA5 reanalysis with observations from the MOSAiC campaign over the central Arctic sea ice during winter 2019/2020. Low-level winds and liquid water path (LWP) are combined to derive different synoptic classes. Results show that the clear state is primarily formed by weak/moderate winds and the absence of liquid-bearing clouds, while strong winds and enhanced LWP primarily form the radiatively opaque state. ERA5 struggles to reproduce these basic statistics, shows too weak sensitivity of thermal radiation to synoptic forcing, and overestimates thermal radiation for similar LWP amounts. The latter is caused by a warm bias, which has a pronounced inversion structure and is largest in clear and calm conditions. Under strong synoptic forcing, the warm bias is constant with height and discrepancies in mixed-phase cloud altitude appear. Separating synoptic conditions is regarded as useful for process-oriented evaluation of the Arctic troposphere in models.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":"26 4","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1298","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1298","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The wintertime central Arctic atmosphere comprises a radiatively clear and a radiatively opaque state, which are linked to synoptic forcing and mixed-phase clouds. Weather and climate models often lack process representations surrounding these states, but prior work mostly treated the problem as an aggregate of synoptic conditions, resulting in partially overlapping biases. Here, we disaggregate the Arctic states and confront ERA5 reanalysis with observations from the MOSAiC campaign over the central Arctic sea ice during winter 2019/2020. Low-level winds and liquid water path (LWP) are combined to derive different synoptic classes. Results show that the clear state is primarily formed by weak/moderate winds and the absence of liquid-bearing clouds, while strong winds and enhanced LWP primarily form the radiatively opaque state. ERA5 struggles to reproduce these basic statistics, shows too weak sensitivity of thermal radiation to synoptic forcing, and overestimates thermal radiation for similar LWP amounts. The latter is caused by a warm bias, which has a pronounced inversion structure and is largest in clear and calm conditions. Under strong synoptic forcing, the warm bias is constant with height and discrepancies in mixed-phase cloud altitude appear. Separating synoptic conditions is regarded as useful for process-oriented evaluation of the Arctic troposphere in models.
期刊介绍:
Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques.
We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.