Evaluation of Different Geometry Poly(L-Lactide-Co-Glycolide-Co-Trimethylene Carbonate Oligomer) Scaffolds Fabricated by Material Extrusion 3D Printing for Adipose Derived Stem Cells Culture
Piotr Paduszyński, Jakub Włodarczyk, Jakub Rok, Małgorzata Pastusiak, Zuzanna Rzepka, Agnieszka Ochab, Paulina Karpeta-Jarząbek, Arkadiusz Orchel, Dorota Wrześniok, Janusz Kasperczyk
{"title":"Evaluation of Different Geometry Poly(L-Lactide-Co-Glycolide-Co-Trimethylene Carbonate Oligomer) Scaffolds Fabricated by Material Extrusion 3D Printing for Adipose Derived Stem Cells Culture","authors":"Piotr Paduszyński, Jakub Włodarczyk, Jakub Rok, Małgorzata Pastusiak, Zuzanna Rzepka, Agnieszka Ochab, Paulina Karpeta-Jarząbek, Arkadiusz Orchel, Dorota Wrześniok, Janusz Kasperczyk","doi":"10.1002/jbm.b.35580","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The combination of stem cells, growth factors, and biomaterials has driven significant advancements in tissue engineering. Depending on the specific tissue requiring regeneration, the scaffold structure and cell type must be carefully selected. Adipose-derived stem cells (ADSC) have garnered considerable interest due to their ease of isolation and high differentiation potential. However, cellular components alone are often insufficient for complete tissue regeneration, making the selection of an appropriate scaffold structure a critical factor. Modern additive manufacturing techniques enable the precise design and fabrication of scaffolds with tailored properties and architectures. This study presents comprehensive research in tissue engineering, polymer chemistry, and polymer processing, focusing on the fabrication of scaffolds with varying architectures for ADSC culture using additive manufacturing. A poly(L-lactide-co-glycolide-co-trimethylene carbonate oligomer) (PLGA-oTMC) terpolymer of defined molar composition and microstructure was synthesized and processed into a filament suitable for 3D printing via the Material Extrusion (formerly Fused Deposition Modeling) method, which has not yet been demonstrated in scientific research. Optimized molar composition, microstructure, and average molar mass of PLGA-oTMC ensured an appropriate melt viscosity, facilitating 3D printing under conditions that minimized polymer thermal degradation. This, in turn, enabled effective cell culture. The resulting scaffolds exhibited favorable biocompatibility, as evidenced by high ADSC viability and proliferation capacity. However, variations in scaffold architecture influenced ADSC colonization, with certain designs promoting more effective adhesion and cytoskeletal organization. The good viability and proliferative ability of ADSC strongly suggest that PLGA-oTMC scaffolds, combined with stem cells, show great promise for the engineering of damaged tissues such as bone or cartilage.</p>\n </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35580","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The combination of stem cells, growth factors, and biomaterials has driven significant advancements in tissue engineering. Depending on the specific tissue requiring regeneration, the scaffold structure and cell type must be carefully selected. Adipose-derived stem cells (ADSC) have garnered considerable interest due to their ease of isolation and high differentiation potential. However, cellular components alone are often insufficient for complete tissue regeneration, making the selection of an appropriate scaffold structure a critical factor. Modern additive manufacturing techniques enable the precise design and fabrication of scaffolds with tailored properties and architectures. This study presents comprehensive research in tissue engineering, polymer chemistry, and polymer processing, focusing on the fabrication of scaffolds with varying architectures for ADSC culture using additive manufacturing. A poly(L-lactide-co-glycolide-co-trimethylene carbonate oligomer) (PLGA-oTMC) terpolymer of defined molar composition and microstructure was synthesized and processed into a filament suitable for 3D printing via the Material Extrusion (formerly Fused Deposition Modeling) method, which has not yet been demonstrated in scientific research. Optimized molar composition, microstructure, and average molar mass of PLGA-oTMC ensured an appropriate melt viscosity, facilitating 3D printing under conditions that minimized polymer thermal degradation. This, in turn, enabled effective cell culture. The resulting scaffolds exhibited favorable biocompatibility, as evidenced by high ADSC viability and proliferation capacity. However, variations in scaffold architecture influenced ADSC colonization, with certain designs promoting more effective adhesion and cytoskeletal organization. The good viability and proliferative ability of ADSC strongly suggest that PLGA-oTMC scaffolds, combined with stem cells, show great promise for the engineering of damaged tissues such as bone or cartilage.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.