{"title":"Three-Way Wideband Filtering Power Dividers With Enhanced Power Dividing Ratio and High Isolation","authors":"Tai-lai Zhang, Lei Liu, Yu Zuo, Zheng-bin Wang","doi":"10.1049/mia2.70023","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a novel topology for the multiway filtering power divider with a large power dividing ratio (PDR) is proposed. A three-line coupled structure and a λ/2 open-ended stub are introduced between the input port and the power dividing junction to reduce the requirement for high impedance in the low-power path and obtain filtering performance. The PDR is significantly enhanced, and the out-of-band rejection is improved. Meanwhile, a wideband port-to-port isolation is achieved through the isolation network. To verify the validity of the proposed methodology, two three-way wideband filtering power dividers with the power ratios of 5:3:2 and 8:1:1 are designed. The simulated and measured results demonstrate that the 5:3:2 (8:1:1) power divider has the bandwidth of 51.57% (48.5%) with the return loss less than −15 dB and the isolation bandwidth 80% (102%) with reference to −20 dB.</p>","PeriodicalId":13374,"journal":{"name":"Iet Microwaves Antennas & Propagation","volume":"19 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mia2.70023","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Microwaves Antennas & Propagation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/mia2.70023","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a novel topology for the multiway filtering power divider with a large power dividing ratio (PDR) is proposed. A three-line coupled structure and a λ/2 open-ended stub are introduced between the input port and the power dividing junction to reduce the requirement for high impedance in the low-power path and obtain filtering performance. The PDR is significantly enhanced, and the out-of-band rejection is improved. Meanwhile, a wideband port-to-port isolation is achieved through the isolation network. To verify the validity of the proposed methodology, two three-way wideband filtering power dividers with the power ratios of 5:3:2 and 8:1:1 are designed. The simulated and measured results demonstrate that the 5:3:2 (8:1:1) power divider has the bandwidth of 51.57% (48.5%) with the return loss less than −15 dB and the isolation bandwidth 80% (102%) with reference to −20 dB.
期刊介绍:
Topics include, but are not limited to:
Microwave circuits including RF, microwave and millimetre-wave amplifiers, oscillators, switches, mixers and other components implemented in monolithic, hybrid, multi-chip module and other technologies. Papers on passive components may describe transmission-line and waveguide components, including filters, multiplexers, resonators, ferrite and garnet devices. For applications, papers can describe microwave sub-systems for use in communications, radar, aerospace, instrumentation, industrial and medical applications. Microwave linear and non-linear measurement techniques.
Antenna topics including designed and prototyped antennas for operation at all frequencies; multiband antennas, antenna measurement techniques and systems, antenna analysis and design, aperture antenna arrays, adaptive antennas, printed and wire antennas, microstrip, reconfigurable, conformal and integrated antennas.
Computational electromagnetics and synthesis of antenna structures including phased arrays and antenna design algorithms.
Radiowave propagation at all frequencies and environments.
Current Special Issue. Call for papers:
Metrology for 5G Technologies - https://digital-library.theiet.org/files/IET_MAP_CFP_M5GT_SI2.pdf