Dynamic Acid Synergy in Y-Embedded Hβ Zeolite: Structural Tailoring and Acid Cooperativity for Enhanced Friedel-Crafts Acylation Towards 2-Ethylanthraquinone
{"title":"Dynamic Acid Synergy in Y-Embedded Hβ Zeolite: Structural Tailoring and Acid Cooperativity for Enhanced Friedel-Crafts Acylation Towards 2-Ethylanthraquinone","authors":"Qingle Zhao, Sai Geng, Jialuo Yin, Dazhuang Gu, Bolin Zhao, Anyang Shi, Jingyi Lao, Zhiping Wang, Hailong Yu, Yue Liu, Huihui Wang, Shiwei Liu","doi":"10.1007/s10562-025-05027-3","DOIUrl":null,"url":null,"abstract":"<div><p>To address the bottleneck of insufficient catalytic activity at single acidic sites in traditional Friedel-Crafts acylation reactions, this study innovatively proposes a novel synergistic catalytic strategy combining Lewis and Brønsted acids. A Y-Hβ catalyst with dual-acid functionality and hierarchical pore structure was successfully constructed by precisely introducing yttrium ions (Y<sup>3+</sup>) into the Hβ zeolite framework through an equal-volume impregnation method. Structural characterization confirms that Y<sup>3+</sup> is anchored in the framework as [YO<sub>4</sub>] tetrahedra, establishing strong Lewis acid sites while maintaining the structural integrity of Hβ zeolite. Mechanistic studies reveal that Y<sup>3+</sup> promotes C = O bond cleavage in anhydride molecules through adsorption polarization to generate C<sup>+</sup> intermediates, while simultaneously enhancing the proton acidity of adjacent Brønsted acid sites via electronic induction effects. Under Lewis acid regulation, neighboring Si-OH-Al sites precisely donate protons to the α-position of anthraquinone, forming C<sub>10</sub>H<sub>7</sub><sup>+</sup> intermediates. The synergistic cooperation between dual acids reduces the acylation reaction energy barrier to 32.8 kcal/mol (a 24.1 kcal/mol reduction compared to Hβ zeolite), significantly accelerating reaction kinetics. Under optimized conditions (250 °C, 5 h), the reaction achieves 82.6% conversion and 80.6% selectivity, demonstrating 50.6% improvement in catalytic efficiency over Hβ zeolite. Regeneration tests verify that the Y-Hβ catalyst maintains over 90% initial activity after 5 cycles, attributed to the high stability of Y-O-Si bonds and exceptional anti-coking performance, highlighting its promising industrial application potential.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 5","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-025-05027-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To address the bottleneck of insufficient catalytic activity at single acidic sites in traditional Friedel-Crafts acylation reactions, this study innovatively proposes a novel synergistic catalytic strategy combining Lewis and Brønsted acids. A Y-Hβ catalyst with dual-acid functionality and hierarchical pore structure was successfully constructed by precisely introducing yttrium ions (Y3+) into the Hβ zeolite framework through an equal-volume impregnation method. Structural characterization confirms that Y3+ is anchored in the framework as [YO4] tetrahedra, establishing strong Lewis acid sites while maintaining the structural integrity of Hβ zeolite. Mechanistic studies reveal that Y3+ promotes C = O bond cleavage in anhydride molecules through adsorption polarization to generate C+ intermediates, while simultaneously enhancing the proton acidity of adjacent Brønsted acid sites via electronic induction effects. Under Lewis acid regulation, neighboring Si-OH-Al sites precisely donate protons to the α-position of anthraquinone, forming C10H7+ intermediates. The synergistic cooperation between dual acids reduces the acylation reaction energy barrier to 32.8 kcal/mol (a 24.1 kcal/mol reduction compared to Hβ zeolite), significantly accelerating reaction kinetics. Under optimized conditions (250 °C, 5 h), the reaction achieves 82.6% conversion and 80.6% selectivity, demonstrating 50.6% improvement in catalytic efficiency over Hβ zeolite. Regeneration tests verify that the Y-Hβ catalyst maintains over 90% initial activity after 5 cycles, attributed to the high stability of Y-O-Si bonds and exceptional anti-coking performance, highlighting its promising industrial application potential.
期刊介绍:
Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.
The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.