Procalcitonin contributes to hippocampal neuronal damage and impairment of LTP: implications for cognitive dysfunction in LPS-induced neuroinflammation rat model

IF 2.3 3区 生物学 Q3 MICROBIOLOGY
Wen Li, Changgeng Song, Xiaona Li, Huimin Zhou, Xianghui Zhao, Wen Jiang
{"title":"Procalcitonin contributes to hippocampal neuronal damage and impairment of LTP: implications for cognitive dysfunction in LPS-induced neuroinflammation rat model","authors":"Wen Li,&nbsp;Changgeng Song,&nbsp;Xiaona Li,&nbsp;Huimin Zhou,&nbsp;Xianghui Zhao,&nbsp;Wen Jiang","doi":"10.1007/s00203-025-04330-2","DOIUrl":null,"url":null,"abstract":"<div><p>Bacterial meningitis (BM) can lead to cognitive impairment, seriously affecting patients’ quality of life. Our previous study demonstrated a significant increase in procalcitonin (PCT) levels in cerebrospinal fluid (CSF) in BM patients, but the functional implications remain unknown. We found high expression of PCT in the hippocampus of LPS-induced neuroinflammation models. PCT had a neurotoxic effect on the primarily cultured hippocampal neurons. The high dose of PCT induced neuronal apoptosis. The low dose of PCT impaired the arborization of hippocampal neurons and reduced the expression of the growth-associated protein-43 (GAP-43) and synaptophysin (SYN). Furthermore, long-term potentiation (LTP) in hippocampal brain slices was decreased after PCT perfusion ex vivo. Our results indicated that PCT had neurotoxic effects on neuronal survival and synaptic plasticity, potentially leading to cognitive impairment after BM.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-025-04330-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial meningitis (BM) can lead to cognitive impairment, seriously affecting patients’ quality of life. Our previous study demonstrated a significant increase in procalcitonin (PCT) levels in cerebrospinal fluid (CSF) in BM patients, but the functional implications remain unknown. We found high expression of PCT in the hippocampus of LPS-induced neuroinflammation models. PCT had a neurotoxic effect on the primarily cultured hippocampal neurons. The high dose of PCT induced neuronal apoptosis. The low dose of PCT impaired the arborization of hippocampal neurons and reduced the expression of the growth-associated protein-43 (GAP-43) and synaptophysin (SYN). Furthermore, long-term potentiation (LTP) in hippocampal brain slices was decreased after PCT perfusion ex vivo. Our results indicated that PCT had neurotoxic effects on neuronal survival and synaptic plasticity, potentially leading to cognitive impairment after BM.

原降钙素导致海马神经元损伤和 LTP 受损:对 LPS 诱导的神经炎症大鼠模型认知功能障碍的影响
细菌性脑膜炎(BM)可导致认知障碍,严重影响患者的生活质量。我们之前的研究表明BM患者脑脊液(CSF)中降钙素原(PCT)水平显著升高,但其功能意义尚不清楚。我们发现lps诱导的神经炎症模型海马中PCT高表达。PCT对原代培养海马神经元有神经毒性作用。高剂量PCT诱导神经元凋亡。低剂量PCT损伤海马神经元树突,降低生长相关蛋白43 (growth-associated protein-43, GAP-43)和突触素(synaptophysin, SYN)的表达。此外,PCT体外灌注后海马脑切片的长期增强(LTP)降低。我们的研究结果表明,PCT对神经元存活和突触可塑性有神经毒性作用,可能导致脑损伤后的认知障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Microbiology
Archives of Microbiology 生物-微生物学
CiteScore
4.90
自引率
3.60%
发文量
601
审稿时长
3 months
期刊介绍: Research papers must make a significant and original contribution to microbiology and be of interest to a broad readership. The results of any experimental approach that meets these objectives are welcome, particularly biochemical, molecular genetic, physiological, and/or physical investigations into microbial cells and their interactions with their environments, including their eukaryotic hosts. Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published. Theoretical papers and those that report on the analysis or ''mining'' of data are acceptable in principle if new information, interpretations, or hypotheses emerge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信