Ping pong chrysanthemum-like Bi-BiOI and ternary core–shell structured Pd@AuPt based dual-electric signal outputs biosensor for accurate detection of CA19 - 9
Siyu Wu, Hongyun Ma, Lin Song, Wen Zhong, Yingying Gu, Yuqing Miao, Yarui An
{"title":"Ping pong chrysanthemum-like Bi-BiOI and ternary core–shell structured Pd@AuPt based dual-electric signal outputs biosensor for accurate detection of CA19 - 9","authors":"Siyu Wu, Hongyun Ma, Lin Song, Wen Zhong, Yingying Gu, Yuqing Miao, Yarui An","doi":"10.1007/s00604-025-07150-9","DOIUrl":null,"url":null,"abstract":"<div><p>Carbohydrate antigen 19–9 (CA19 - 9) can be used as a biomarker for pancreatic cancer. Measuring the concentration of CA19 - 9 in serum is essential for screening pancreatic cancer patients. In this paper, a dual-electric signal outputs biosensor based on ping pong chrysanthemum-like Bi-BiOI and ternary core–shell structured Pd@AuPt was constructed for ultra-sensitive detection of tumor marker CA19 - 9 using differential pulse voltammetry (DPV) and chronoamperometry (i-t). Ping pong Chrysanthemum-like Bi-BIOI was prepared via one-pot hydrothermal method. To realize the covalent bonding of bismuth-based materials with MWCNT, bismuth-based materials were functionalized by amino groups. MWCNT-NH<sub>2</sub>-Bi-BIOI with large specific surface area and remarkable electrical conductivity was used as the sensing platform. Ternary core–shell structured Pd@AuPt with peroxide-like activity and enhanced biocompatibility immobilized massive antibodies through covalent Au–N and Pt–N bonds, thus broadening the linear range of the immunosensor. Based on the above materials, a dual-electric signal outputs biosensor was constructed for detecting CA19 - 9. Under optimal conditions, the detection range of DPV and i-t is 0.001–150 U/mL, the detection limit of DPV is 0.0003 U/mL, and that of i-t is 0.00024 U/mL. In addition, the dual-electric signal outputs immunoassay excels in anti-interference, splendid reproducibility and high recovery in actual sample detection, indicating that the immunosensor is a promising approach to be applied to the detection of CA19 - 9 in clinical diagnosis.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 5","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-07150-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Carbohydrate antigen 19–9 (CA19 - 9) can be used as a biomarker for pancreatic cancer. Measuring the concentration of CA19 - 9 in serum is essential for screening pancreatic cancer patients. In this paper, a dual-electric signal outputs biosensor based on ping pong chrysanthemum-like Bi-BiOI and ternary core–shell structured Pd@AuPt was constructed for ultra-sensitive detection of tumor marker CA19 - 9 using differential pulse voltammetry (DPV) and chronoamperometry (i-t). Ping pong Chrysanthemum-like Bi-BIOI was prepared via one-pot hydrothermal method. To realize the covalent bonding of bismuth-based materials with MWCNT, bismuth-based materials were functionalized by amino groups. MWCNT-NH2-Bi-BIOI with large specific surface area and remarkable electrical conductivity was used as the sensing platform. Ternary core–shell structured Pd@AuPt with peroxide-like activity and enhanced biocompatibility immobilized massive antibodies through covalent Au–N and Pt–N bonds, thus broadening the linear range of the immunosensor. Based on the above materials, a dual-electric signal outputs biosensor was constructed for detecting CA19 - 9. Under optimal conditions, the detection range of DPV and i-t is 0.001–150 U/mL, the detection limit of DPV is 0.0003 U/mL, and that of i-t is 0.00024 U/mL. In addition, the dual-electric signal outputs immunoassay excels in anti-interference, splendid reproducibility and high recovery in actual sample detection, indicating that the immunosensor is a promising approach to be applied to the detection of CA19 - 9 in clinical diagnosis.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.