{"title":"Synthesis of bimetallic crednerite nanosheet as an efficient heterogeneous catalyst in Fenton-like degradation of bisphenol A","authors":"Hanxiao Chen, Bin Deng, Heng Lin, Hui Zhang","doi":"10.1007/s11705-025-2546-1","DOIUrl":null,"url":null,"abstract":"<div><p>Integrating bimetallic oxides into peroxymonosulfate (PMS) based advanced oxidation processes is appealing to span the limited kinetics in view of the interaction between multiple active sites. Herein, the crednerite (CuMnO<sub>2</sub>) nanosheet, synthesized through a low-temperature hydrothermal method, has demonstrated significant potential for water remediation. The as-prepared CuMnO<sub>2</sub> sample was characterized by involving morphology, crystal texture, and physicochemical property. The catalytic activity of CuMnO<sub>2</sub> on PMS activation was evaluated, and the influence of PMS concentration, catalyst dosage, and pH value on the removal of bisphenol A (BPA) was investigated. Over an abroad pH range from 4.0 to 10.0, more than 90% BPA could be effectively removed after 60 min reaction with the lower dosages of 0.2 g·L<sup>−1</sup> catalyst and 0.4 mmol·L<sup>−1</sup> oxidant. In terms of reaction pathways, the metal (Cu/Mn)-hydroxyl moiety with cooperative effect and good redox cycle mediate the disaggregation of adsorbed PMS into surface-bound sulfate and hydroxyl radicals, which are mainly responsible for the swift elimination and mineralization of BPA in the CuMnO<sub>2</sub>/PMS system. This work provides a constructive paradigm for the development of a cost-effective heterogeneous Fenton-like reaction toward environmental purification.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 5","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2546-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Integrating bimetallic oxides into peroxymonosulfate (PMS) based advanced oxidation processes is appealing to span the limited kinetics in view of the interaction between multiple active sites. Herein, the crednerite (CuMnO2) nanosheet, synthesized through a low-temperature hydrothermal method, has demonstrated significant potential for water remediation. The as-prepared CuMnO2 sample was characterized by involving morphology, crystal texture, and physicochemical property. The catalytic activity of CuMnO2 on PMS activation was evaluated, and the influence of PMS concentration, catalyst dosage, and pH value on the removal of bisphenol A (BPA) was investigated. Over an abroad pH range from 4.0 to 10.0, more than 90% BPA could be effectively removed after 60 min reaction with the lower dosages of 0.2 g·L−1 catalyst and 0.4 mmol·L−1 oxidant. In terms of reaction pathways, the metal (Cu/Mn)-hydroxyl moiety with cooperative effect and good redox cycle mediate the disaggregation of adsorbed PMS into surface-bound sulfate and hydroxyl radicals, which are mainly responsible for the swift elimination and mineralization of BPA in the CuMnO2/PMS system. This work provides a constructive paradigm for the development of a cost-effective heterogeneous Fenton-like reaction toward environmental purification.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.