QCD axion dark matter from level crossing with refined adiabatic condition

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy
Kai Murai, Yuma Narita, Fuminobu Takahashi, Wen Yin
{"title":"QCD axion dark matter from level crossing with refined adiabatic condition","authors":"Kai Murai,&nbsp;Yuma Narita,&nbsp;Fuminobu Takahashi,&nbsp;Wen Yin","doi":"10.1007/JHEP04(2025)124","DOIUrl":null,"url":null,"abstract":"<p>We investigate the level-crossing phenomenon in two-axion systems, where the mass eigenvalues intersect as the mass of one axion increases with the cooling of the universe. This phenomenon can significantly alter the abundance of axions in the early universe. Our study focuses on its impact on the QCD axion and an axion-like particle, identifying viable regions of axion mass and decay constant that explain the observed dark matter. We demonstrate the equivalence of two different bases for describing the axion system in the existing literature. Furthermore, we derive an improved expression for the adiabatic condition that overcomes limitations in earlier formulations. This new formulation is basis-independent, and we numerically validate its effectiveness. Our analysis reveals specific relations between axion masses and axion-photon couplings within the viable region. These relations could potentially serve as a smoking gun signal for this scenario if confirmed experimentally. We also find that, using the chiral perturbation model, the thermal friction on the QCD axion might be significantly larger than previously estimated. Additionally, we show that a simple model with axion mixing can naturally realize either a heavier or lighter QCD axion.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)124.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP04(2025)124","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the level-crossing phenomenon in two-axion systems, where the mass eigenvalues intersect as the mass of one axion increases with the cooling of the universe. This phenomenon can significantly alter the abundance of axions in the early universe. Our study focuses on its impact on the QCD axion and an axion-like particle, identifying viable regions of axion mass and decay constant that explain the observed dark matter. We demonstrate the equivalence of two different bases for describing the axion system in the existing literature. Furthermore, we derive an improved expression for the adiabatic condition that overcomes limitations in earlier formulations. This new formulation is basis-independent, and we numerically validate its effectiveness. Our analysis reveals specific relations between axion masses and axion-photon couplings within the viable region. These relations could potentially serve as a smoking gun signal for this scenario if confirmed experimentally. We also find that, using the chiral perturbation model, the thermal friction on the QCD axion might be significantly larger than previously estimated. Additionally, we show that a simple model with axion mixing can naturally realize either a heavier or lighter QCD axion.

精化绝热条件下水平交叉的QCD轴子暗物质
我们研究了双轴子系统中的平交现象,其中一个轴子的质量随着宇宙的冷却而增加,质量特征值相交。这种现象可以显著地改变早期宇宙中轴子的丰度。我们的研究重点是它对QCD轴子和类似轴子的粒子的影响,确定轴子质量和衰变常数的可行区域,以解释观测到的暗物质。我们证明了现有文献中描述轴子系统的两种不同基的等价性。此外,我们推导了绝热条件的改进表达式,克服了先前公式中的局限性。这个新公式是基无关的,我们用数值验证了它的有效性。我们的分析揭示了在可行区域内轴子质量和轴子-光子耦合之间的特定关系。如果实验得到证实,这些关系可能会成为这种情况的确凿证据。我们还发现,使用手性微扰模型,QCD轴子上的热摩擦可能比先前估计的要大得多。此外,我们证明了一个简单的轴子混合模型可以自然地实现更重或更轻的QCD轴子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信