Kai Murai, Yuma Narita, Fuminobu Takahashi, Wen Yin
{"title":"QCD axion dark matter from level crossing with refined adiabatic condition","authors":"Kai Murai, Yuma Narita, Fuminobu Takahashi, Wen Yin","doi":"10.1007/JHEP04(2025)124","DOIUrl":null,"url":null,"abstract":"<p>We investigate the level-crossing phenomenon in two-axion systems, where the mass eigenvalues intersect as the mass of one axion increases with the cooling of the universe. This phenomenon can significantly alter the abundance of axions in the early universe. Our study focuses on its impact on the QCD axion and an axion-like particle, identifying viable regions of axion mass and decay constant that explain the observed dark matter. We demonstrate the equivalence of two different bases for describing the axion system in the existing literature. Furthermore, we derive an improved expression for the adiabatic condition that overcomes limitations in earlier formulations. This new formulation is basis-independent, and we numerically validate its effectiveness. Our analysis reveals specific relations between axion masses and axion-photon couplings within the viable region. These relations could potentially serve as a smoking gun signal for this scenario if confirmed experimentally. We also find that, using the chiral perturbation model, the thermal friction on the QCD axion might be significantly larger than previously estimated. Additionally, we show that a simple model with axion mixing can naturally realize either a heavier or lighter QCD axion.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)124.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP04(2025)124","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the level-crossing phenomenon in two-axion systems, where the mass eigenvalues intersect as the mass of one axion increases with the cooling of the universe. This phenomenon can significantly alter the abundance of axions in the early universe. Our study focuses on its impact on the QCD axion and an axion-like particle, identifying viable regions of axion mass and decay constant that explain the observed dark matter. We demonstrate the equivalence of two different bases for describing the axion system in the existing literature. Furthermore, we derive an improved expression for the adiabatic condition that overcomes limitations in earlier formulations. This new formulation is basis-independent, and we numerically validate its effectiveness. Our analysis reveals specific relations between axion masses and axion-photon couplings within the viable region. These relations could potentially serve as a smoking gun signal for this scenario if confirmed experimentally. We also find that, using the chiral perturbation model, the thermal friction on the QCD axion might be significantly larger than previously estimated. Additionally, we show that a simple model with axion mixing can naturally realize either a heavier or lighter QCD axion.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).