“Exact” Solutions for Circularly Polarized Solitons and Vortices in a Kerr Medium

IF 1.4 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
V. P. Ruban
{"title":"“Exact” Solutions for Circularly Polarized Solitons and Vortices in a Kerr Medium","authors":"V. P. Ruban","doi":"10.1134/S0021364025600120","DOIUrl":null,"url":null,"abstract":"<p>For the curl–curl type vector equation describing a monochromatic light wave in a Kerr medium, an exact substitution has been analyzed, which leads to a system of four first-order ordinary differential equations for functions of the transverse radial coordinate. This system includes the integer multiplicity <i>m</i> of a vortex in the longitudinal electric field component. In this case, the multiplicity of a vortex in a wave with the left and right circular polarizations is <i>m</i> – 1 and <i>m</i> + 1, respectively. With |<i>m</i>| = 1, numerical solutions of this system with appropriate boundary conditions make it possible to obtain the full information on the internal structure of a strongly nonlinear circularly polarized optical beam in a focusing medium taking into account the longitudinal field component and a small fraction of the opposite polarization. For <i>m</i> = 0, a solution in the form of a left-handed vortex in a left circularly polarized wave exists for a defocusing medium, which differs qualitatively from the right-handed vortex in the left circularly polarized wave for <i>m</i> = 2.</p>","PeriodicalId":604,"journal":{"name":"JETP Letters","volume":"121 5","pages":"354 - 359"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0021364025600120.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JETP Letters","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0021364025600120","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

For the curl–curl type vector equation describing a monochromatic light wave in a Kerr medium, an exact substitution has been analyzed, which leads to a system of four first-order ordinary differential equations for functions of the transverse radial coordinate. This system includes the integer multiplicity m of a vortex in the longitudinal electric field component. In this case, the multiplicity of a vortex in a wave with the left and right circular polarizations is m – 1 and m + 1, respectively. With |m| = 1, numerical solutions of this system with appropriate boundary conditions make it possible to obtain the full information on the internal structure of a strongly nonlinear circularly polarized optical beam in a focusing medium taking into account the longitudinal field component and a small fraction of the opposite polarization. For m = 0, a solution in the form of a left-handed vortex in a left circularly polarized wave exists for a defocusing medium, which differs qualitatively from the right-handed vortex in the left circularly polarized wave for m = 2.

克尔介质中圆极化孤子和漩涡的“精确”解
对于描述Kerr介质中单色光波的旋旋型矢量方程,分析了精确代入,得到了四个一阶径向横向坐标函数的常微分方程组。该系统在纵向电场分量中包含涡旋的整数多重度m。在这种情况下,具有左圆极化和右圆极化的波中的旋涡的多重度分别为m - 1和m + 1。当|m| = 1时,在适当的边界条件下,该系统的数值解可以获得聚焦介质中考虑纵向场分量和一小部分反偏振的强非线性圆偏振光束内部结构的全部信息。当m = 0时,散焦介质存在左圆极化波中的左旋涡旋形式的解,它与m = 2时左圆极化波中的右旋涡旋有质的区别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JETP Letters
JETP Letters 物理-物理:综合
CiteScore
2.40
自引率
30.80%
发文量
164
审稿时长
3-6 weeks
期刊介绍: All topics of experimental and theoretical physics including gravitation, field theory, elementary particles and nuclei, plasma, nonlinear phenomena, condensed matter, superconductivity, superfluidity, lasers, and surfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信