Ryan Chafin, Majharul Islam Sujan, Sean Parkin, Jonah W. Jurss and Aron J. Huckaba
{"title":"Light-driven CO2 reduction with substituted imidazole-pyridine Re catalysts favoring formic acid production†","authors":"Ryan Chafin, Majharul Islam Sujan, Sean Parkin, Jonah W. Jurss and Aron J. Huckaba","doi":"10.1039/D5RA01561H","DOIUrl":null,"url":null,"abstract":"<p >Removing carbon dioxide from the atmosphere is an attractive way to mitigate the greenhouse gas effect that contributes to climate change. A series of donor-pi (D-π), acceptor-pi (A-π), and π Re(<small>I</small>) pyridyl imidazole complexes have been synthesized and examined under photocatalytic conditions for the photocatalytic reduction of CO<small><sub>2</sub></small>. The catalytic activity of the complexes was further supported by cyclic voltammetry through the presence of a catalytic current under CO<small><sub>2</sub></small> atmosphere. The D-π, π, and A-π complexes were studied to elucidate the effects of incorporating conjugated electron donating <em>vs.</em> withdrawing groups on the catalytic rates and product selectivity. The synthesized complexes were compared with Re(bpy)(CO)<small><sub>3</sub></small>Br (where bpy is 2,2′-bipyridine), the benchmark catalyst for this transformation. Remarkably, the complex with A-π pendant (<strong>RC4</strong>) outperformed the π (<strong>RC2–3</strong>) and D-π (<strong>RC5</strong>) complexes for the production of formic acid (HCO<small><sub>2</sub></small>H) in the presence of photosensitizer [Ru(bpy)<small><sub>3</sub></small>]<small><sup>2+</sup></small> and sacrificial electron donor BIH (1,3-dimethyl-2-phenyl-2,3-dihydro-1<em>H</em>-benzo[<em>d</em>]-imidazoline). Among the investigated catalysts, <strong>RC4</strong> with the A-π pendant showed the highest turnover number (TON) value of 844 for HCO<small><sub>2</sub></small>H production with 86% carbon selectivity. In stark contrast to the imidazole-pyridine based catalysts reported here that favor formic acid as a product, Re(bpy)(CO)<small><sub>3</sub></small>Br generated no formic acid under the same conditions. The imidazole-pyridine complexes also function as catalysts for CO<small><sub>2</sub></small> reduction without an added photosensitizer, however, the TON values under self-sensitized conditions are poor.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 16","pages":" 12547-12556"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra01561h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra01561h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Removing carbon dioxide from the atmosphere is an attractive way to mitigate the greenhouse gas effect that contributes to climate change. A series of donor-pi (D-π), acceptor-pi (A-π), and π Re(I) pyridyl imidazole complexes have been synthesized and examined under photocatalytic conditions for the photocatalytic reduction of CO2. The catalytic activity of the complexes was further supported by cyclic voltammetry through the presence of a catalytic current under CO2 atmosphere. The D-π, π, and A-π complexes were studied to elucidate the effects of incorporating conjugated electron donating vs. withdrawing groups on the catalytic rates and product selectivity. The synthesized complexes were compared with Re(bpy)(CO)3Br (where bpy is 2,2′-bipyridine), the benchmark catalyst for this transformation. Remarkably, the complex with A-π pendant (RC4) outperformed the π (RC2–3) and D-π (RC5) complexes for the production of formic acid (HCO2H) in the presence of photosensitizer [Ru(bpy)3]2+ and sacrificial electron donor BIH (1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]-imidazoline). Among the investigated catalysts, RC4 with the A-π pendant showed the highest turnover number (TON) value of 844 for HCO2H production with 86% carbon selectivity. In stark contrast to the imidazole-pyridine based catalysts reported here that favor formic acid as a product, Re(bpy)(CO)3Br generated no formic acid under the same conditions. The imidazole-pyridine complexes also function as catalysts for CO2 reduction without an added photosensitizer, however, the TON values under self-sensitized conditions are poor.
期刊介绍:
An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.