Yinqi Yang, Guoshuai Ma, Xiaoli Hu, Wei Wang, Zhonglin Du, Yao Wang, Xue-zhong Gong, Haoyu Tan, Fengxiang Guo and Jianguo Tang
{"title":"Hollow flower-like WO3@TiO2 heterojunction microspheres for the photocatalytic degradation of rhodamine B and tetracycline†","authors":"Yinqi Yang, Guoshuai Ma, Xiaoli Hu, Wei Wang, Zhonglin Du, Yao Wang, Xue-zhong Gong, Haoyu Tan, Fengxiang Guo and Jianguo Tang","doi":"10.1039/D5RA01412C","DOIUrl":null,"url":null,"abstract":"<p >In the context of sustainable development, the utilization of semiconductor materials for the degradation of dyes, antibiotics, heavy metals, and pesticides in wastewater under visible light has emerged as a focal point of contemporary research. In this investigation, a WO<small><sub>3</sub></small>@TiO<small><sub>2</sub></small> composite was synthesized <em>via</em> a solvothermal method, with the composite exhibiting a molar ratio of 5% WO<small><sub>3</sub></small> to TiO<small><sub>2</sub></small> precursors demonstrating optimal photocatalytic degradation performance. This material achieved complete degradation of 20 mg per L Rhodamine B (RhB) dye and tetracycline (TC) antibiotic within 30 min. Furthermore, the effects of initial pollutant concentration and solution pH on catalytic efficacy were systematically explored. The findings revealed that at RhB concentrations below 40 mg L<small><sup>−1</sup></small>, the degradation proceeded at an accelerated rate, with a rate constant exceeding 0.128 min<small><sup>−1</sup></small>. The catalyst exhibited robust performance across a broad pH range, attaining peak degradation efficiency at pH ≈ 3. The exceptional photocatalytic prowess of the WO<small><sub>3</sub></small>@TiO<small><sub>2</sub></small> composite is predominantly attributable to its distinctive hollow microstructure, the intimate interfacial synergy between WO<small><sub>3</sub></small> and TiO<small><sub>2</sub></small>, and the efficient separation of photogenerated electrons and holes facilitated by the type-II heterojunction architecture.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 16","pages":" 12629-12644"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra01412c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra01412c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the context of sustainable development, the utilization of semiconductor materials for the degradation of dyes, antibiotics, heavy metals, and pesticides in wastewater under visible light has emerged as a focal point of contemporary research. In this investigation, a WO3@TiO2 composite was synthesized via a solvothermal method, with the composite exhibiting a molar ratio of 5% WO3 to TiO2 precursors demonstrating optimal photocatalytic degradation performance. This material achieved complete degradation of 20 mg per L Rhodamine B (RhB) dye and tetracycline (TC) antibiotic within 30 min. Furthermore, the effects of initial pollutant concentration and solution pH on catalytic efficacy were systematically explored. The findings revealed that at RhB concentrations below 40 mg L−1, the degradation proceeded at an accelerated rate, with a rate constant exceeding 0.128 min−1. The catalyst exhibited robust performance across a broad pH range, attaining peak degradation efficiency at pH ≈ 3. The exceptional photocatalytic prowess of the WO3@TiO2 composite is predominantly attributable to its distinctive hollow microstructure, the intimate interfacial synergy between WO3 and TiO2, and the efficient separation of photogenerated electrons and holes facilitated by the type-II heterojunction architecture.
期刊介绍:
An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.