Ready-to-Use Composite Fused Deposition Modeling Filaments Produced With Polylactic Acid and Recycled Nd–Fe–B Nanocrystalline Powder for Additive Manufacturing of Bonded Magnets
IF 1.1 4区 物理与天体物理Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Gabriel M. Vieira;Marcelo A. Rosa;Paulo A. P. Wendhausen;Maximiliano D. Martins
{"title":"Ready-to-Use Composite Fused Deposition Modeling Filaments Produced With Polylactic Acid and Recycled Nd–Fe–B Nanocrystalline Powder for Additive Manufacturing of Bonded Magnets","authors":"Gabriel M. Vieira;Marcelo A. Rosa;Paulo A. P. Wendhausen;Maximiliano D. Martins","doi":"10.1109/LMAG.2025.3551243","DOIUrl":null,"url":null,"abstract":"Fused deposition modeling (FDM) is an additive manufacturing technique that has become widely used in many fields of engineering and has recently proven to be suitable for producing complex, net-shaped bonded Nd–Fe–B magnets. At the same time, recycling end-of-life magnets has been an emerging concern due to their increasing presence in current technologies and the intrinsic scarcity of rare-Earth elements, such as neodymium and praseodymium. Here, we investigated the feasibility of using recycled nanocrystalline Nd–Fe–B powders, obtained from a hydrogenation–disproportionation–desorption–recombination (HDDR) process in the preparation of FDM feedstock and subsequent printing of magnetic parts. Recycled magnetic powder was mixed with polylactic acid and extruded into filaments containing increasing volume fractions of magnetic powder. It was possible to obtain filaments containing from 6.7% to 23.6% in volume (30.4 to 65.2 wt.%) of the magnetic powder, from which parts could be printed, reaching maximum coercivity (<italic>H</i><sub>cj</sub>) of 707.7 ± 3.5 kA/m, maximum remanence (<italic>B</i><sub>r</sub>) of 84.5 ± 0.4 mT, maximum energy product (<italic>BH</i><sub>max</sub>) of 1.3 kJ/m<sup>3</sup>, and average part porosity of 42 ± 8%. Coercivity loss of about 8.6% was observed in the printed parts compared to the recycled powder (750±75 kA/m). Aging experiments showed that such loss may be a combined effect of thermal and oxidation effects of the magnetic particles during the additive manufacturing processing. The present work has demonstrated the achievement of ready-to-use, high-coercivity FDM filaments, and 3-D-printed parts using recycled Nd–Fe–B HDDR powders.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"16 ","pages":"1-5"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Magnetics Letters","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10925627/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Fused deposition modeling (FDM) is an additive manufacturing technique that has become widely used in many fields of engineering and has recently proven to be suitable for producing complex, net-shaped bonded Nd–Fe–B magnets. At the same time, recycling end-of-life magnets has been an emerging concern due to their increasing presence in current technologies and the intrinsic scarcity of rare-Earth elements, such as neodymium and praseodymium. Here, we investigated the feasibility of using recycled nanocrystalline Nd–Fe–B powders, obtained from a hydrogenation–disproportionation–desorption–recombination (HDDR) process in the preparation of FDM feedstock and subsequent printing of magnetic parts. Recycled magnetic powder was mixed with polylactic acid and extruded into filaments containing increasing volume fractions of magnetic powder. It was possible to obtain filaments containing from 6.7% to 23.6% in volume (30.4 to 65.2 wt.%) of the magnetic powder, from which parts could be printed, reaching maximum coercivity (Hcj) of 707.7 ± 3.5 kA/m, maximum remanence (Br) of 84.5 ± 0.4 mT, maximum energy product (BHmax) of 1.3 kJ/m3, and average part porosity of 42 ± 8%. Coercivity loss of about 8.6% was observed in the printed parts compared to the recycled powder (750±75 kA/m). Aging experiments showed that such loss may be a combined effect of thermal and oxidation effects of the magnetic particles during the additive manufacturing processing. The present work has demonstrated the achievement of ready-to-use, high-coercivity FDM filaments, and 3-D-printed parts using recycled Nd–Fe–B HDDR powders.
期刊介绍:
IEEE Magnetics Letters is a peer-reviewed, archival journal covering the physics and engineering of magnetism, magnetic materials, applied magnetics, design and application of magnetic devices, bio-magnetics, magneto-electronics, and spin electronics. IEEE Magnetics Letters publishes short, scholarly articles of substantial current interest.
IEEE Magnetics Letters is a hybrid Open Access (OA) journal. For a fee, authors have the option making their articles freely available to all, including non-subscribers. OA articles are identified as Open Access.