{"title":"Electrode pretreatment cycles for suppressing self-discharge of electrochemical double-layer capacitors","authors":"Woo Jung Choi, Hyun Ook Seo, Ketack Kim","doi":"10.1016/j.jelechem.2025.119133","DOIUrl":null,"url":null,"abstract":"<div><div>Self-discharge is an intrinsic property of electrochemical double-layer capacitors (EDLCs), and its elimination by any method is challenging. This study investigated ways to reduce the faradaic reaction triggers of self-discharge using simple pretreatment cycles. When the cell was operated between 0 and 2.7 V (baseline), a passivation film was formed on the electrodes, which allowed the cell to survive for a long life cycle without rapidly consuming the electrolyte. However, the passivation layer was not sufficiently firm to prevent electrolyte penetration during self-discharge. Once the electrolyte penetrated the passivation layer, electrolysis gradually eroded the charged state. Pretreatment cycles can reinforce the passivation layers with a few 2.9 or 3.1 V cutoff cycles. Cells with a 3.1 V pretreatment cycle reduced the self-discharge rate by 45 % at 26 h compared to the baseline value. This simple pretreatment method was incorporated into the passivation layer formation process, effectively suppressing self-discharge. However, the capacitance decreased slightly as the movement of ions slowed during self-discharge, which is a natural phenomenon. This study demonstrates that the electrolyte itself acts as a self-discharge trigger, serving as a Faradaic reactant. In addition, a simple method for reducing self-discharge has been reported. This suggests the need for a novel electrolyte additive that strongly suppresses electrolysis without impeding ion movement.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"988 ","pages":"Article 119133"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665725002073","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Self-discharge is an intrinsic property of electrochemical double-layer capacitors (EDLCs), and its elimination by any method is challenging. This study investigated ways to reduce the faradaic reaction triggers of self-discharge using simple pretreatment cycles. When the cell was operated between 0 and 2.7 V (baseline), a passivation film was formed on the electrodes, which allowed the cell to survive for a long life cycle without rapidly consuming the electrolyte. However, the passivation layer was not sufficiently firm to prevent electrolyte penetration during self-discharge. Once the electrolyte penetrated the passivation layer, electrolysis gradually eroded the charged state. Pretreatment cycles can reinforce the passivation layers with a few 2.9 or 3.1 V cutoff cycles. Cells with a 3.1 V pretreatment cycle reduced the self-discharge rate by 45 % at 26 h compared to the baseline value. This simple pretreatment method was incorporated into the passivation layer formation process, effectively suppressing self-discharge. However, the capacitance decreased slightly as the movement of ions slowed during self-discharge, which is a natural phenomenon. This study demonstrates that the electrolyte itself acts as a self-discharge trigger, serving as a Faradaic reactant. In addition, a simple method for reducing self-discharge has been reported. This suggests the need for a novel electrolyte additive that strongly suppresses electrolysis without impeding ion movement.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.