{"title":"Gain and Threshold Improvements of 1300 nm Lasers Based on InGaAs/InAlGaAs Superlattice Active Regions","authors":"Andrey Babichev;Evgeniy Pirogov;Maksim Sobolev;Sergey Blokhin;Yuri Shernyakov;Mikhail Maximov;Andrey Lutetskiy;Nikita Pikhtin;Leonid Karachinsky;Innokenty Novikov;Anton Egorov;Si-Cong Tian;Dieter Bimberg","doi":"10.1109/JQE.2025.3553022","DOIUrl":null,"url":null,"abstract":"A detailed experimental analysis of the impact of active region design on the performance of 1300 nm lasers based on InGaAs/InAlGaAs superlattices is presented. Three different types of superlattice active regions and waveguide layer compositions were grown. Using a superlattice allows to downshift the energy position of the miniband, as compared to thin InGaAs quantum wells, having the same composition, being beneficial for high-temperature operation. Very low internal loss (~6 cm−1), low transparency current density of ~500 A/cm2, together with 46 cm−1 modal gain and 53 % internal efficiency were observed for broad-area lasers with an active region based on a highly strained In0.74Ga0.26As/In0.53Al0.25Ga0.22As superlattice. Characteristic temperatures <inline-formula> <tex-math>$T_{0}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$T_{1}$ </tex-math></inline-formula> were improved up to 76 K and 100 K, respectively. These data suggest that such superlattices have also the potential to much improve VCSEL properties at this wavelength.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"61 2","pages":"1-9"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10933993/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A detailed experimental analysis of the impact of active region design on the performance of 1300 nm lasers based on InGaAs/InAlGaAs superlattices is presented. Three different types of superlattice active regions and waveguide layer compositions were grown. Using a superlattice allows to downshift the energy position of the miniband, as compared to thin InGaAs quantum wells, having the same composition, being beneficial for high-temperature operation. Very low internal loss (~6 cm−1), low transparency current density of ~500 A/cm2, together with 46 cm−1 modal gain and 53 % internal efficiency were observed for broad-area lasers with an active region based on a highly strained In0.74Ga0.26As/In0.53Al0.25Ga0.22As superlattice. Characteristic temperatures $T_{0}$ and $T_{1}$ were improved up to 76 K and 100 K, respectively. These data suggest that such superlattices have also the potential to much improve VCSEL properties at this wavelength.
期刊介绍:
The IEEE Journal of Quantum Electronics is dedicated to the publication of manuscripts reporting novel experimental or theoretical results in the broad field of the science and technology of quantum electronics. The Journal comprises original contributions, both regular papers and letters, describing significant advances in the understanding of quantum electronics phenomena or the demonstration of new devices, systems, or applications. Manuscripts reporting new developments in systems and applications must emphasize quantum electronics principles or devices. The scope of JQE encompasses the generation, propagation, detection, and application of coherent electromagnetic radiation having wavelengths below one millimeter (i.e., in the submillimeter, infrared, visible, ultraviolet, etc., regions). Whether the focus of a manuscript is a quantum-electronic device or phenomenon, the critical factor in the editorial review of a manuscript is the potential impact of the results presented on continuing research in the field or on advancing the technological base of quantum electronics.