Spectral conditions for component factors in graphs involving minimum degree

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Zhiren Sun , Sizhong Zhou
{"title":"Spectral conditions for component factors in graphs involving minimum degree","authors":"Zhiren Sun ,&nbsp;Sizhong Zhou","doi":"10.1016/j.dam.2025.04.017","DOIUrl":null,"url":null,"abstract":"<div><div>A spanning subgraph <span><math><mi>H</mi></math></span> of a graph <span><math><mi>G</mi></math></span> is called an <span><math><mrow><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><mi>T</mi><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mo>}</mo></mrow></math></span>-factor if every component of <span><math><mi>H</mi></math></span> is isomorphic to an element of <span><math><mrow><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><mi>T</mi><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mo>}</mo></mrow></math></span>, where <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span> is one special family of tree. Let <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>Q</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denote the adjacency matrix and the signless Laplacian matrix of <span><math><mi>G</mi></math></span>, respectively. The largest eigenvalues of <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>Q</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, denoted by <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, are called the adjacency spectral radius and the signless Laplacian spectral radius of <span><math><mi>G</mi></math></span>, respectively. In this paper, we first present a sufficient condition to guarantee that a connected graph <span><math><mi>G</mi></math></span> with minimum degree <span><math><mi>δ</mi></math></span> contains a <span><math><mrow><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><mi>T</mi><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mo>}</mo></mrow></math></span>-factor with respect to its adjacency spectral radius, then we claim a sufficient condition to ensure that a connected graph <span><math><mi>G</mi></math></span> with minimum degree <span><math><mi>δ</mi></math></span> has a <span><math><mrow><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><mi>T</mi><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mo>}</mo></mrow></math></span>-factor via its signless Laplacian spectral radius.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 180-187"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X2500188X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A spanning subgraph H of a graph G is called an {P2,C3,P5,T(3)}-factor if every component of H is isomorphic to an element of {P2,C3,P5,T(3)}, where T(3) is one special family of tree. Let A(G) and Q(G) denote the adjacency matrix and the signless Laplacian matrix of G, respectively. The largest eigenvalues of A(G) and Q(G), denoted by ρ(G) and q(G), are called the adjacency spectral radius and the signless Laplacian spectral radius of G, respectively. In this paper, we first present a sufficient condition to guarantee that a connected graph G with minimum degree δ contains a {P2,C3,P5,T(3)}-factor with respect to its adjacency spectral radius, then we claim a sufficient condition to ensure that a connected graph G with minimum degree δ has a {P2,C3,P5,T(3)}-factor via its signless Laplacian spectral radius.
最小度图中各分量因子的谱条件
图G的生成子图H称为{P2,C3,P5,T(3)}-因子,如果H的每个分量同构于{P2,C3,P5,T(3)}中的一个元素,其中T(3)是一个特殊的树族。设A(G)和Q(G)分别表示G的邻接矩阵和无符号拉普拉斯矩阵。用ρ(G)和Q(G)表示的A(G)和Q(G)的最大特征值分别称为G的邻接谱半径和无符号拉普拉斯谱半径。本文首先给出了最小度为δ的连通图G在其邻接谱半径上存在{P2,C3,P5,T(3)}-因子的充分条件,然后给出了最小度为δ的连通图G在其无符号拉普拉斯谱半径上存在{P2,C3,P5,T(3)}-因子的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信