Qudsia Saeed , Adnan Mustafa , Shahzaib Ali , Lasisi Hammed Tobiloba , Ansa Rebi , Sadia Babar Baloch , Muhammad Zahid Mumtaz , Muhammad Naveed , Muhammad Farooq , Xiankai Lu
{"title":"Advancing crop resilience through nucleic acid innovations: rhizosphere engineering for food security and climate adaptation","authors":"Qudsia Saeed , Adnan Mustafa , Shahzaib Ali , Lasisi Hammed Tobiloba , Ansa Rebi , Sadia Babar Baloch , Muhammad Zahid Mumtaz , Muhammad Naveed , Muhammad Farooq , Xiankai Lu","doi":"10.1016/j.ijbiomac.2025.143194","DOIUrl":null,"url":null,"abstract":"<div><div>Rhizosphere engineering has emerged as a transformative strategy to address the pressing challenges of climate change, food security, and environmental sustainability. By harnessing the dynamic interactions between plants and microbes, and environmental processes, this approach offers innovative solutions for enhancing crop production, protecting against pests and diseases, and remediating contaminated environments. This review explores how rhizosphere engineering, both plant-based and microbe-based, can be leveraged to enhance crop productivity, manage pests and diseases, and remediate contaminated environments under shifting climate conditions. We examine the effects of climate change drivers such as elevated CO<sub>2</sub>, increased N deposition, rising temperatures, and altered precipitation patterns, on plant-microbe interactions and rhizosphere processes. We show that climate change impacts key functions, including respiration, decomposition and stabilization of soil organic matter, nutrient cycling, greenhouse gas emissions, and microbial community dynamics. Despite these challenges, engineered rhizospheres can mitigate adverse effects of climate change by improving rhizodeposition, nitrogen fixation, root architecture modification, selective microbe recruitment, and pathogen control, while enhancing carbon allocation and stabilization in soil. However, the deployment of these technologies is not without challenges. Ecological risks, such as unintended gene transfer and disruption of native microbial communities, as well as socioeconomic barriers, must be carefully addressed to ensure safe and scalable implementation. We identify critical research gaps such as the limited understanding of multi-taxon cooperation and scalability in engineered rhizosphere systems, and how mechanistic understanding of designer plants and microbes can advance crop production, protection, and environmental remediation in agriculture and agroforestry under global changes.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"310 ","pages":"Article 143194"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813025037468","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rhizosphere engineering has emerged as a transformative strategy to address the pressing challenges of climate change, food security, and environmental sustainability. By harnessing the dynamic interactions between plants and microbes, and environmental processes, this approach offers innovative solutions for enhancing crop production, protecting against pests and diseases, and remediating contaminated environments. This review explores how rhizosphere engineering, both plant-based and microbe-based, can be leveraged to enhance crop productivity, manage pests and diseases, and remediate contaminated environments under shifting climate conditions. We examine the effects of climate change drivers such as elevated CO2, increased N deposition, rising temperatures, and altered precipitation patterns, on plant-microbe interactions and rhizosphere processes. We show that climate change impacts key functions, including respiration, decomposition and stabilization of soil organic matter, nutrient cycling, greenhouse gas emissions, and microbial community dynamics. Despite these challenges, engineered rhizospheres can mitigate adverse effects of climate change by improving rhizodeposition, nitrogen fixation, root architecture modification, selective microbe recruitment, and pathogen control, while enhancing carbon allocation and stabilization in soil. However, the deployment of these technologies is not without challenges. Ecological risks, such as unintended gene transfer and disruption of native microbial communities, as well as socioeconomic barriers, must be carefully addressed to ensure safe and scalable implementation. We identify critical research gaps such as the limited understanding of multi-taxon cooperation and scalability in engineered rhizosphere systems, and how mechanistic understanding of designer plants and microbes can advance crop production, protection, and environmental remediation in agriculture and agroforestry under global changes.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.