Significance of thermal conductivity and variable density on heat and mass transfer of MHD second-grade nanofluid along high-temperature polymer surface

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS
Nidhal Ben Khedher , Zia Ullah , Md Mahbub Alam , Saleh Al Arni , Isam Elbadawi , O.D. Makinde , Mohamed Boujelbene
{"title":"Significance of thermal conductivity and variable density on heat and mass transfer of MHD second-grade nanofluid along high-temperature polymer surface","authors":"Nidhal Ben Khedher ,&nbsp;Zia Ullah ,&nbsp;Md Mahbub Alam ,&nbsp;Saleh Al Arni ,&nbsp;Isam Elbadawi ,&nbsp;O.D. Makinde ,&nbsp;Mohamed Boujelbene","doi":"10.1016/j.csite.2025.106168","DOIUrl":null,"url":null,"abstract":"<div><div>The novelty of current research is to investigate exponential thermal density and thermal conductivity effect on heat-mass transmission in second-grade magneto nanofluid along stretching surface with thermal-solutal slip boundary conditions. The well define similarity transformation is applied on the couple of partial differential equations (PDEs) to transform into ordinary differential equations (ODEs). The Newton-Raphson and central difference technique is used to linearize these equations. Using MATLAB software technique, the results in graphical and numerical form are explored. The impact of various variables on fluid velocities, fluid temperatures and nanoparticle concentrations profiles are found graphically and numerically including, variable thermal conductivity, magnetic field, second-grade nanofluid factor, thermal slip, and concentration slip. The value of Nusselt number, Sherwood number and skin friction are found numerically for Prandtl number, density index, and thermophoretic factor. For asymptotic numerical outcomes, the following range of parameters such <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>1.4</mn></mrow></math></span>, <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>N</mi><mi>t</mi><mo>≤</mo><mn>1.2</mn></mrow></math></span>, <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>N</mi><mi>b</mi><mo>≤</mo><mn>2.0</mn></mrow></math></span>, <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>ξ</mi><mo>≤</mo><mn>6.0</mn></mrow></math></span>, <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>λ</mi><mo>≤</mo><mn>14.0</mn></mrow></math></span>, <span><math><mrow><mn>0.1</mn><mo>≤</mo><msub><mi>λ</mi><mn>1</mn></msub><mo>≤</mo><mn>8.0</mn></mrow></math></span>, <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>0.8</mn></mrow></math></span>, <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>Pr</mi><mo>≤</mo><mn>10.0</mn></mrow></math></span>, <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>L</mi><mi>e</mi><mo>≤</mo><mn>3.5</mn></mrow></math></span>, <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>B</mi><mi>t</mi><mo>≤</mo><mn>4.0</mn></mrow></math></span>, and <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>B</mi><mi>c</mi><mo>≤</mo><mn>5.0</mn></mrow></math></span> is used. It found that the higher value of thermal conductivity and thermal-concentration slip increases the velocity profile while magnetic field decreased it. Mass transmission and Nusselt rate are increased with increasing magnetic field. The maximum Nusselt number is explored for higher thermophoresis and density parameter. The noticeable amplitude in fluid velocity profiles is observed with thermal conductivity, temperature-concentration slip and buoyancy force effects under lower fluid density.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"71 ","pages":"Article 106168"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25004289","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The novelty of current research is to investigate exponential thermal density and thermal conductivity effect on heat-mass transmission in second-grade magneto nanofluid along stretching surface with thermal-solutal slip boundary conditions. The well define similarity transformation is applied on the couple of partial differential equations (PDEs) to transform into ordinary differential equations (ODEs). The Newton-Raphson and central difference technique is used to linearize these equations. Using MATLAB software technique, the results in graphical and numerical form are explored. The impact of various variables on fluid velocities, fluid temperatures and nanoparticle concentrations profiles are found graphically and numerically including, variable thermal conductivity, magnetic field, second-grade nanofluid factor, thermal slip, and concentration slip. The value of Nusselt number, Sherwood number and skin friction are found numerically for Prandtl number, density index, and thermophoretic factor. For asymptotic numerical outcomes, the following range of parameters such 0.1n1.4, 0.1Nt1.2, 0.1Nb2.0, 0.1ξ6.0, 0.1λ14.0, 0.1λ18.0, 0.1α0.8, 0.1Pr10.0, 0.1Le3.5, 0.1Bt4.0, and 0.1Bc5.0 is used. It found that the higher value of thermal conductivity and thermal-concentration slip increases the velocity profile while magnetic field decreased it. Mass transmission and Nusselt rate are increased with increasing magnetic field. The maximum Nusselt number is explored for higher thermophoresis and density parameter. The noticeable amplitude in fluid velocity profiles is observed with thermal conductivity, temperature-concentration slip and buoyancy force effects under lower fluid density.
导热系数和变密度对MHD二级纳米流体沿高温聚合物表面传热传质的影响
当前研究的新颖之处在于在热溶质滑移边界条件下,研究指数热密度和导热系数对二级磁纳米流体沿拉伸表面热质传递的影响。将定义良好的相似变换应用于一对偏微分方程转化为常微分方程。牛顿-拉夫森和中心差分技术被用来线性化这些方程。利用MATLAB软件技术,对结果进行了图形化和数值化的探讨。各种变量对流体速度、流体温度和纳米颗粒浓度分布的影响通过图形和数值方式发现,包括可变导热系数、磁场、二级纳米流体因子、热滑移和浓度滑移。用数值方法求出普朗特数、密度指数和热沉因子的努塞尔数、舍伍德数和皮肤摩擦力的值。对于渐近数值结果,使用0.1≤n≤1.4、0.1≤Nt≤1.2、0.1≤Nb≤2.0、0.1≤ξ≤6.0、0.1≤λ≤14.0、0.1≤λ1≤8.0、0.1≤α≤0.8、0.1≤Pr≤10.0、0.1≤Le≤3.5、0.1≤Bt≤4.0、0.1≤Bc≤5.0等参数范围。研究发现,较高的导热系数和热浓滑移值使速度剖面增大,而磁场使速度剖面减小。传质率和努塞尔率随磁场的增大而增大。对于较高的热泳率和密度参数,探索了最大努塞尔数。在较低的流体密度条件下,由于热导率、温度-浓度滑移和浮力的影响,流体速度曲线出现了明显的振幅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信