P. Anju , Hiba Muhammed , K. Arun , B.K. Bahuleyan , M.T. Ramesan
{"title":"Synthesis of nanocurcumin conjugated titanium dioxide bio-nanocomposites for enhanced optical, electrical, and antibacterial applications","authors":"P. Anju , Hiba Muhammed , K. Arun , B.K. Bahuleyan , M.T. Ramesan","doi":"10.1016/j.physb.2025.417269","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the synthesis of nanocurcumin (NCur) and its impact on the structural, electrical, and antibacterial properties of titanium dioxide (TiO<sub>2</sub>) through a simple solvent-free mechanical mixing. FTIR confirmed NC-TiO<sub>2</sub> interactions, while UV–Vis spectroscopy showed a red shift and a reduced bandgap from 3.571 eV to 2.550 eV. XRD verified the crystalline retention of TiO<sub>2</sub>. Morphological analysis using optical microscopy and FE-SEM showed uniform NCur dispersion in TiO<sub>2</sub> up to 6 wt%, beyond which agglomeration occurred. Electrical impedance studies demonstrated a 1.127-fold increase in conductivity at 100 Hz and a reduction in activation energy from 5.37 × 10<sup>−5</sup>eV to 5.00 × 10<sup>−5</sup> at 6 wt% NCur. Additionally, the dielectric constant increased by 29 %, enhancing the material's energy storage potential. Antibacterial assays indicated that TiO<sub>2</sub>/NCur bio-nanocomposites exhibited significant antibacterial activity against <em>E. coli</em>, increasing efficacy by 183.33 %. These multifunctional properties make TiO<sub>2</sub>/NCur composites highly promising for applications in biosafe electronics, energy storage, and antibacterial technologies.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"711 ","pages":"Article 417269"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625003862","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the synthesis of nanocurcumin (NCur) and its impact on the structural, electrical, and antibacterial properties of titanium dioxide (TiO2) through a simple solvent-free mechanical mixing. FTIR confirmed NC-TiO2 interactions, while UV–Vis spectroscopy showed a red shift and a reduced bandgap from 3.571 eV to 2.550 eV. XRD verified the crystalline retention of TiO2. Morphological analysis using optical microscopy and FE-SEM showed uniform NCur dispersion in TiO2 up to 6 wt%, beyond which agglomeration occurred. Electrical impedance studies demonstrated a 1.127-fold increase in conductivity at 100 Hz and a reduction in activation energy from 5.37 × 10−5eV to 5.00 × 10−5 at 6 wt% NCur. Additionally, the dielectric constant increased by 29 %, enhancing the material's energy storage potential. Antibacterial assays indicated that TiO2/NCur bio-nanocomposites exhibited significant antibacterial activity against E. coli, increasing efficacy by 183.33 %. These multifunctional properties make TiO2/NCur composites highly promising for applications in biosafe electronics, energy storage, and antibacterial technologies.
期刊介绍:
Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work.
Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas:
-Magnetism
-Materials physics
-Nanostructures and nanomaterials
-Optics and optical materials
-Quantum materials
-Semiconductors
-Strongly correlated systems
-Superconductivity
-Surfaces and interfaces