K. Krishna Rao, T. Durga Rao, K. Naga Raju, B. Sattibabu
{"title":"Observation of exchange bias properties in Lu substituted BiFeO3","authors":"K. Krishna Rao, T. Durga Rao, K. Naga Raju, B. Sattibabu","doi":"10.1016/j.physb.2025.417263","DOIUrl":null,"url":null,"abstract":"<div><div>Bi<sub>1-x</sub>Lu<sub>x</sub>FeO<sub>3</sub>, x = 0.00, 0.03, 0.05 and 0.07 compounds were synthesized using the solid-state reaction method. Room temperature structural analysis was carried out for the prepared compounds through Rietveld refinement. The studies showed that the compounds were stabilized in a rhombohedral <em>R</em>3<em>c</em> structure at room temperature. UV–visible spectroscopy measurements revealed a slight widening in the optical band gap, from 2.03 eV to 2.08 eV, with the increase in x. The magnetic measurements indicated that remanent magnetization and coercive fields increased with the increase in the Lu substitution. Interestingly, the substituted compounds exhibited exchange bias properties under zero field cooled conditions. Polarization measurements indicated better ferroelectric polarization hysteresis loops observed in the compounds with higher Lu substitution. Impedance measurements demonstrated an improved insulating behaviour with Lu substitution. The grain and grain boundary resistances were extracted using a two-parallel RC circuit model. Additionally, the materials exhibited a negative temperature coefficient of resistance, as was evidenced by the <em>ac</em> conductivity measurements in all the prepared compounds.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"711 ","pages":"Article 417263"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625003801","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Bi1-xLuxFeO3, x = 0.00, 0.03, 0.05 and 0.07 compounds were synthesized using the solid-state reaction method. Room temperature structural analysis was carried out for the prepared compounds through Rietveld refinement. The studies showed that the compounds were stabilized in a rhombohedral R3c structure at room temperature. UV–visible spectroscopy measurements revealed a slight widening in the optical band gap, from 2.03 eV to 2.08 eV, with the increase in x. The magnetic measurements indicated that remanent magnetization and coercive fields increased with the increase in the Lu substitution. Interestingly, the substituted compounds exhibited exchange bias properties under zero field cooled conditions. Polarization measurements indicated better ferroelectric polarization hysteresis loops observed in the compounds with higher Lu substitution. Impedance measurements demonstrated an improved insulating behaviour with Lu substitution. The grain and grain boundary resistances were extracted using a two-parallel RC circuit model. Additionally, the materials exhibited a negative temperature coefficient of resistance, as was evidenced by the ac conductivity measurements in all the prepared compounds.
期刊介绍:
Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work.
Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas:
-Magnetism
-Materials physics
-Nanostructures and nanomaterials
-Optics and optical materials
-Quantum materials
-Semiconductors
-Strongly correlated systems
-Superconductivity
-Surfaces and interfaces