Parisa Khoshvaght , Jawad Tanveer , Amir Masoud Rahmani , Mohammad Mohammadi , Amin Mehranzadeh , Jan Lansky , Mehdi Hosseinzadeh
{"title":"H-TERF: A hybrid approach combining fuzzy multi-criteria decision-making techniques and enhanced random forest to improve WBAN-IoT","authors":"Parisa Khoshvaght , Jawad Tanveer , Amir Masoud Rahmani , Mohammad Mohammadi , Amin Mehranzadeh , Jan Lansky , Mehdi Hosseinzadeh","doi":"10.1016/j.iot.2025.101613","DOIUrl":null,"url":null,"abstract":"<div><div>The Internet of Things (IoT) technology today has grown rapidly compared to the last few years, and the use of this technology has increased the quality of service to users day by day. The various applications of IoT have caused the attention of this innovation to enhance among different organizations. One of the important challenges of the IoT is routing, which can affect having a stable network. In this research, a hybrid approach called H-TERF (Hybrid TOPSIS and Enhanced Random Forest) is proposed for achieving efficient routing in IoT networks, specifically in Wireless Body Area Networks (WBAN). This method initially cluster nodes by using the DBSCAN clustering algorithm to optimize intra-cluster communication. Then, for routing, the nodes are ranked using the Fuzzy TOPSIS and Fuzzy AHP. This ranking is determined by several criteria, including the remaining energy of nodes, node memory, and throughput. Additionally, to manage more complex criteria such as node historical records and traffic rate, the initial ranking by the TOPSIS approach, along with the other mentioned criteria, is fed into an enhanced random forest model to identify the optimal path. This hybrid method enhances network performance in terms of lifespan, efficiency, delay, and packet delivery ratio. The outcomes of the simulation show that the suggested method surpasses existing approaches and is highly effective for application in IoT and WBAN networks. For example, the performance improvement of the proposed approach over the F-EVM, DECR, and DHH-EFO approaches in energy consumption was 20.62%, 25.85%, and 32.57%, respectively.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"32 ","pages":"Article 101613"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525001271","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The Internet of Things (IoT) technology today has grown rapidly compared to the last few years, and the use of this technology has increased the quality of service to users day by day. The various applications of IoT have caused the attention of this innovation to enhance among different organizations. One of the important challenges of the IoT is routing, which can affect having a stable network. In this research, a hybrid approach called H-TERF (Hybrid TOPSIS and Enhanced Random Forest) is proposed for achieving efficient routing in IoT networks, specifically in Wireless Body Area Networks (WBAN). This method initially cluster nodes by using the DBSCAN clustering algorithm to optimize intra-cluster communication. Then, for routing, the nodes are ranked using the Fuzzy TOPSIS and Fuzzy AHP. This ranking is determined by several criteria, including the remaining energy of nodes, node memory, and throughput. Additionally, to manage more complex criteria such as node historical records and traffic rate, the initial ranking by the TOPSIS approach, along with the other mentioned criteria, is fed into an enhanced random forest model to identify the optimal path. This hybrid method enhances network performance in terms of lifespan, efficiency, delay, and packet delivery ratio. The outcomes of the simulation show that the suggested method surpasses existing approaches and is highly effective for application in IoT and WBAN networks. For example, the performance improvement of the proposed approach over the F-EVM, DECR, and DHH-EFO approaches in energy consumption was 20.62%, 25.85%, and 32.57%, respectively.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.