Zhantong Tu , Kaiqi Chen , Jiating Zheng , Sijie Liu , Bing Lei , Xin Wu
{"title":"3D printing of a high-performance composite solid-state electrolyte with enhanced ionic conductivity and mechanical properties","authors":"Zhantong Tu , Kaiqi Chen , Jiating Zheng , Sijie Liu , Bing Lei , Xin Wu","doi":"10.1016/j.nxener.2025.100283","DOIUrl":null,"url":null,"abstract":"<div><div>Polymer electrolytes exhibit advantageous processing characteristics and superior mechanical properties, making them highly promising for all-solid-state lithium battery applications. However, their low room-temperature ionic conductivity remains a major obstacle to widespread commercialization. To address this challenge, we incorporated Li<sub>6.75</sub>La<sub>3</sub>Zr<sub>1.75</sub>Ta<sub>0.25</sub>O<sub>12</sub> (LLZTO) ceramics to facilitate the structural modification of polyvinylidene fluoride (PVDF) polymer electrolytes. Furthermore, we enhanced the electrolyte film fabrication process by replacing conventional solution casting with advanced 3D printing technology. This innovative approach not only improved the ionic conductivity (8.3 × 10<sup>−4</sup> S·cm<sup>−1</sup>) and mechanical strength (16 MPa) of the electrolyte film but also enabled complex geometries, streamlining production and potentially lowering costs. To evaluate the performance of the developed electrolyte, solid-state lithium batteries with the configuration LiCoO<sub>2</sub>|printed PVDF/LLZTO film|Li were constructed, exhibiting satisfactory rate capability and cycling stability at room temperature. Our results demonstrate that 3D-printed solid electrolytes represent a promising strategy for advancing solid-state battery technology.</div></div><div><h3>Data Availability</h3><div>The data supporting this article have been included as part of the <span><span>Supplementary Information</span></span>.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"7 ","pages":"Article 100283"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X25000468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Polymer electrolytes exhibit advantageous processing characteristics and superior mechanical properties, making them highly promising for all-solid-state lithium battery applications. However, their low room-temperature ionic conductivity remains a major obstacle to widespread commercialization. To address this challenge, we incorporated Li6.75La3Zr1.75Ta0.25O12 (LLZTO) ceramics to facilitate the structural modification of polyvinylidene fluoride (PVDF) polymer electrolytes. Furthermore, we enhanced the electrolyte film fabrication process by replacing conventional solution casting with advanced 3D printing technology. This innovative approach not only improved the ionic conductivity (8.3 × 10−4 S·cm−1) and mechanical strength (16 MPa) of the electrolyte film but also enabled complex geometries, streamlining production and potentially lowering costs. To evaluate the performance of the developed electrolyte, solid-state lithium batteries with the configuration LiCoO2|printed PVDF/LLZTO film|Li were constructed, exhibiting satisfactory rate capability and cycling stability at room temperature. Our results demonstrate that 3D-printed solid electrolytes represent a promising strategy for advancing solid-state battery technology.
Data Availability
The data supporting this article have been included as part of the Supplementary Information.