Enhancing rainfall frequency analysis through bivariate nonstationary modeling in South Korea

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Heejin An , Hyun-Han Kwon , Moonyoung Lee , Inkyung Min , Kichul Jung , Daeryong Park
{"title":"Enhancing rainfall frequency analysis through bivariate nonstationary modeling in South Korea","authors":"Heejin An ,&nbsp;Hyun-Han Kwon ,&nbsp;Moonyoung Lee ,&nbsp;Inkyung Min ,&nbsp;Kichul Jung ,&nbsp;Daeryong Park","doi":"10.1016/j.envsoft.2025.106471","DOIUrl":null,"url":null,"abstract":"<div><div>This study conducted a bivariate nonstationary frequency analysis utilizing rainfall events to capture the multidimensional nature of rainfall phenomena and rainfall pattern variability in South Korea. Extreme events were identified by the peaks over threshold (POT) method which enhanced the accuracy of estimation. The nonstationary model, incorporating a nonlinear regression using time as a covariate instead of the scale parameter in the generalized Pareto distribution (GPD), provided a more stable interannual variability of rainfall representation under a dynamic climate compared to stationary models. The ability of the bivariate POT method threshold <span><math><mrow><mo>(</mo><msub><mi>T</mi><mrow><mi>a</mi><mi>n</mi><mi>d</mi></mrow></msub><mo>)</mo></mrow></math></span> to enhance our understanding of climate change by extracting events with high values in both variables was confirmed. Furthermore, bivariate analysis and nonstationarity significantly influenced the estimation of the return period, indicating that the proposed framework facilitates robust adjustment to nonstationary rainfall patterns, ensuring the dependable utilization of current design frequencies in the context of climate change.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"190 ","pages":"Article 106471"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225001550","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study conducted a bivariate nonstationary frequency analysis utilizing rainfall events to capture the multidimensional nature of rainfall phenomena and rainfall pattern variability in South Korea. Extreme events were identified by the peaks over threshold (POT) method which enhanced the accuracy of estimation. The nonstationary model, incorporating a nonlinear regression using time as a covariate instead of the scale parameter in the generalized Pareto distribution (GPD), provided a more stable interannual variability of rainfall representation under a dynamic climate compared to stationary models. The ability of the bivariate POT method threshold (Tand) to enhance our understanding of climate change by extracting events with high values in both variables was confirmed. Furthermore, bivariate analysis and nonstationarity significantly influenced the estimation of the return period, indicating that the proposed framework facilitates robust adjustment to nonstationary rainfall patterns, ensuring the dependable utilization of current design frequencies in the context of climate change.
通过二元非平稳模型加强韩国降雨频率分析
本研究利用降雨事件进行了双变量非平稳频率分析,以捕捉韩国降雨现象和降雨模式变异的多维性质。采用峰值超过阈值(POT)方法识别极端事件,提高了估计的准确性。与平稳模型相比,非平稳模型采用非线性回归,将时间作为协变量,而不是广义帕累托分布(GPD)中的尺度参数,在动态气候下提供了更稳定的降水年际变化表示。二元POT方法阈值(Tand)通过提取两个变量中的高值事件来增强我们对气候变化的理解的能力得到证实。此外,双变量分析和非平稳性显著影响了回归期的估计,表明所提出的框架有助于对非平稳性降雨模式进行稳健调整,确保在气候变化背景下可靠地利用当前设计频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信