Automatic detection of in-stream river wood from random forest machine learning and exogenous indices using very high-resolution aerial imagery

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Gauthier Grimmer , Romain Wenger , Germain Forestier , Valentin Chardon
{"title":"Automatic detection of in-stream river wood from random forest machine learning and exogenous indices using very high-resolution aerial imagery","authors":"Gauthier Grimmer ,&nbsp;Romain Wenger ,&nbsp;Germain Forestier ,&nbsp;Valentin Chardon","doi":"10.1016/j.envsoft.2025.106460","DOIUrl":null,"url":null,"abstract":"<div><div>River wood (RW) plays a key role in shaping aquatic and riparian habitats while influencing sediment and water dynamics. This study presents the first automated RW detection model using Random Forest classification and near-infrared aerial imagery on the Meurthe River. By progressively incorporating exogenous indices, the model achieved recall, precision, and F1-scores between 12%–39%, 90%–94%, and 21%–54%, respectively. Validation on the Loire, Doubs, and Buëch rivers confirmed robust detection rates (75.41–86.57%) after filtering. The model also estimated RW characteristics, including length, diameter, area, and volume, with high accuracy post-calibration. These findings demonstrate the potential of remote sensing and AI for RW monitoring, providing an efficient decision-support tool for river management and habitat conservation.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"190 ","pages":"Article 106460"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225001446","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

River wood (RW) plays a key role in shaping aquatic and riparian habitats while influencing sediment and water dynamics. This study presents the first automated RW detection model using Random Forest classification and near-infrared aerial imagery on the Meurthe River. By progressively incorporating exogenous indices, the model achieved recall, precision, and F1-scores between 12%–39%, 90%–94%, and 21%–54%, respectively. Validation on the Loire, Doubs, and Buëch rivers confirmed robust detection rates (75.41–86.57%) after filtering. The model also estimated RW characteristics, including length, diameter, area, and volume, with high accuracy post-calibration. These findings demonstrate the potential of remote sensing and AI for RW monitoring, providing an efficient decision-support tool for river management and habitat conservation.

Abstract Image

基于随机森林机器学习和外生指数的河流木材自动检测
河流木材(RW)在塑造水生和河岸生境中起着关键作用,同时影响沉积物和水动力学。本研究提出了第一个基于随机森林分类和近红外航空图像的Meurthe河RW自动检测模型。通过逐步纳入外源指标,该模型的召回率、精确度和f1得分分别在12%-39%、90%-94%和21%-54%之间。对卢瓦尔河、Doubs河和Buëch河的验证证实,过滤后的检测率为75.41-86.57%。该模型还估算了RW的特征,包括长度、直径、面积和体积,并具有高精度的后校正。这些发现证明了遥感和人工智能在RW监测方面的潜力,为河流管理和栖息地保护提供了有效的决策支持工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信