Samaneh Ghanbarlou , Davood Kahforoushan , Hossein Abdollahi , Payam Zarrintaj , Adam Alomar , Carlos Villanueva , Seyed Mohammad Davachi
{"title":"Advances in quantum dot-based fluorescence sensors for environmental and biomedical detection","authors":"Samaneh Ghanbarlou , Davood Kahforoushan , Hossein Abdollahi , Payam Zarrintaj , Adam Alomar , Carlos Villanueva , Seyed Mohammad Davachi","doi":"10.1016/j.talanta.2025.128176","DOIUrl":null,"url":null,"abstract":"<div><div>This review explores the evolution and application of fluorescence sensors based on quantum dots (QDs) for detecting environmental and biological analytes across diverse real-world scenarios and complex sample matrices and also categorizes different types of quantum dots, such as carbon dots (C-dots), graphene quantum dots (GQDs), and metal-doped QDs and examines their properties, including tunable fluorescence, low toxicity, and photostability, which make them ideal for a variety of applications. Key sensing mechanisms, including Förster Resonance Energy Transfer (FRET) and fluorescence quenching, are discussed alongside innovations like paper-based, ratiometric, and turn-on/turn-off sensors. Additionally, case studies are provided to showcase the application of these sensors in environmental and biomedical fields, where they provide rapid, sensitive, and cost-effective solutions. This review presents the potential of quantum dot-based fluorescence sensors to transform analytical detection technologies, offering new opportunities in environmental monitoring, bioimaging, and public health safety.</div></div>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"294 ","pages":"Article 128176"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039914025006666","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This review explores the evolution and application of fluorescence sensors based on quantum dots (QDs) for detecting environmental and biological analytes across diverse real-world scenarios and complex sample matrices and also categorizes different types of quantum dots, such as carbon dots (C-dots), graphene quantum dots (GQDs), and metal-doped QDs and examines their properties, including tunable fluorescence, low toxicity, and photostability, which make them ideal for a variety of applications. Key sensing mechanisms, including Förster Resonance Energy Transfer (FRET) and fluorescence quenching, are discussed alongside innovations like paper-based, ratiometric, and turn-on/turn-off sensors. Additionally, case studies are provided to showcase the application of these sensors in environmental and biomedical fields, where they provide rapid, sensitive, and cost-effective solutions. This review presents the potential of quantum dot-based fluorescence sensors to transform analytical detection technologies, offering new opportunities in environmental monitoring, bioimaging, and public health safety.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.