Xiaomei Ren , Ji Liu , Yating Zhang , Jianing Zhang , Yuanlan Yang , Wenjian Yang , Jianhui Liu , Anxiang Su , Hui Xu , Zhenwei Yuan
{"title":"A rapid and specific fluorescent probe based on ESIPT-AIE-active for copper ion quantitative detection in food and environmental samples","authors":"Xiaomei Ren , Ji Liu , Yating Zhang , Jianing Zhang , Yuanlan Yang , Wenjian Yang , Jianhui Liu , Anxiang Su , Hui Xu , Zhenwei Yuan","doi":"10.1016/j.talanta.2025.128188","DOIUrl":null,"url":null,"abstract":"<div><div>In the field of food safety, the identification and measurement of active components in food is a pressing issue. The concentration of copper ions (Cu<sup>2+</sup>) in the environment is closely linked to food safety, and overall biological health. Therefore, developing rapid and accurate analytical techniques to monitor Cu<sup>2+</sup> in food is of great significance. In this study, two fluorescent probes L-2 and L-3 were synthesized through a simple Schiff base condensation reaction. And L-3 demonstrated better anti-interference ability to Cu<sup>2+</sup> than that of L-2. Meanwhile, spectroscopic experiments showed that L-3 possessed an extremely low detection limit (LOD) and low limits of quantification (LOQ) (LOD = 92.79 nM, LOQ = 309.33 nM), and quickly respond time (<30 s). Probe L-3 for monitoring effectively quantitatively identified Cu<sup>2+</sup> in food and environmental samples, achieving an accuracy rate ranging from 84.42% to 117.45% and precision with a relative standard deviation (RSD) of less than 6.0%. The accuracy had been validated using the inductively coupled plasma-mass spectrometry (ICP-MS). Simultaneously, a WeChat Mini Program has been developed to detect total copper content in food samples based on fluorescence values, enabling consumers to evaluate food safety more intuitively. Moreover, L-3 also facilitated the quantitative visualization of Cu<sup>2+</sup> in biological systems, underscoring its compatibility and practicality.</div></div>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"294 ","pages":"Article 128188"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039914025006782","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the field of food safety, the identification and measurement of active components in food is a pressing issue. The concentration of copper ions (Cu2+) in the environment is closely linked to food safety, and overall biological health. Therefore, developing rapid and accurate analytical techniques to monitor Cu2+ in food is of great significance. In this study, two fluorescent probes L-2 and L-3 were synthesized through a simple Schiff base condensation reaction. And L-3 demonstrated better anti-interference ability to Cu2+ than that of L-2. Meanwhile, spectroscopic experiments showed that L-3 possessed an extremely low detection limit (LOD) and low limits of quantification (LOQ) (LOD = 92.79 nM, LOQ = 309.33 nM), and quickly respond time (<30 s). Probe L-3 for monitoring effectively quantitatively identified Cu2+ in food and environmental samples, achieving an accuracy rate ranging from 84.42% to 117.45% and precision with a relative standard deviation (RSD) of less than 6.0%. The accuracy had been validated using the inductively coupled plasma-mass spectrometry (ICP-MS). Simultaneously, a WeChat Mini Program has been developed to detect total copper content in food samples based on fluorescence values, enabling consumers to evaluate food safety more intuitively. Moreover, L-3 also facilitated the quantitative visualization of Cu2+ in biological systems, underscoring its compatibility and practicality.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.