{"title":"Structure-activity relationship of self-immobilized mycelial pellets and their functions in wastewater treatment","authors":"Li Wang , Yuqing Cao , Jiayu Wei , Shanshan Bai","doi":"10.1016/j.biortech.2025.132558","DOIUrl":null,"url":null,"abstract":"<div><div>Mycelial pellets (MPs) represent an emerging class of eco-friendly, self-immobilized bioactive materials characterized by high biological activity, superior porous structure, and unique biocompatibility. Based on structure–activity relationships, this paper reviews MPs' applications, mechanisms, and advantages in wastewater treatment, while updating fundamental theories on their production optimization, structure characteristics, and surface properties. Emphasis is placed on MPs' three principal functions in remediating pollution: biodegradation via high biological activity, adsorption through porous aggregated structure and superior surface features, and bio-carrier role based on the three-dimensional carbonaceous skeleton. Furthermore, the multifunctionality of MPs improves sludge settleability and dewaterability, as well as enhances aerobic granular sludge granulation and structural stability. Future research priorities include scalable low-cost production, mechanical reinforcement strategies, development of engineered strains and composites, and safe disposal of pollutant-laden MPs. This work provides valuable insights into the use of MPs in wastewater treatment and identifies critical directions for advancing MPs technology.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"430 ","pages":"Article 132558"},"PeriodicalIF":9.7000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425005243","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Mycelial pellets (MPs) represent an emerging class of eco-friendly, self-immobilized bioactive materials characterized by high biological activity, superior porous structure, and unique biocompatibility. Based on structure–activity relationships, this paper reviews MPs' applications, mechanisms, and advantages in wastewater treatment, while updating fundamental theories on their production optimization, structure characteristics, and surface properties. Emphasis is placed on MPs' three principal functions in remediating pollution: biodegradation via high biological activity, adsorption through porous aggregated structure and superior surface features, and bio-carrier role based on the three-dimensional carbonaceous skeleton. Furthermore, the multifunctionality of MPs improves sludge settleability and dewaterability, as well as enhances aerobic granular sludge granulation and structural stability. Future research priorities include scalable low-cost production, mechanical reinforcement strategies, development of engineered strains and composites, and safe disposal of pollutant-laden MPs. This work provides valuable insights into the use of MPs in wastewater treatment and identifies critical directions for advancing MPs technology.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.