Gagliardo–Nirenberg inequality via a new pointwise estimate

IF 1.7 2区 数学 Q1 MATHEMATICS
Karol Leśnik , Tomáš Roskovec , Filip Soudský
{"title":"Gagliardo–Nirenberg inequality via a new pointwise estimate","authors":"Karol Leśnik ,&nbsp;Tomáš Roskovec ,&nbsp;Filip Soudský","doi":"10.1016/j.jfa.2025.110996","DOIUrl":null,"url":null,"abstract":"<div><div>We prove a new type of pointwise estimate of the Kałamajska–Mazya–Shaposhnikova type, where sparse averaging operators replace the maximal operator. It allows us to extend the Gagliardo–Nirenberg interpolation inequality to all rearrangement invariant Banach function spaces without any assumptions on their upper Boyd index, i.e. omitting problems caused by unboundedness of maximal operator on spaces close to <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>. In particular, we remove unnecessary assumptions from the Gagliardo–Nirenberg inequality in the setting of Orlicz and Lorentz spaces. The applied method is new in this context and may be seen as a kind of sparse domination technique fitted to the context of rearrangement invariant Banach function spaces.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 7","pages":"Article 110996"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001788","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a new type of pointwise estimate of the Kałamajska–Mazya–Shaposhnikova type, where sparse averaging operators replace the maximal operator. It allows us to extend the Gagliardo–Nirenberg interpolation inequality to all rearrangement invariant Banach function spaces without any assumptions on their upper Boyd index, i.e. omitting problems caused by unboundedness of maximal operator on spaces close to L1. In particular, we remove unnecessary assumptions from the Gagliardo–Nirenberg inequality in the setting of Orlicz and Lorentz spaces. The applied method is new in this context and may be seen as a kind of sparse domination technique fitted to the context of rearrangement invariant Banach function spaces.
加利亚多-尼伦伯格不等式的一个新的逐点估计
我们证明了一种新的Kałamajska-Mazya-Shaposhnikova类型的点估计,其中稀疏平均算子取代了极大算子。它允许我们将Gagliardo-Nirenberg插值不等式推广到所有重排不变的Banach函数空间,而不需要对它们的上Boyd指标做任何假设,即省略了在接近L1的空间上极大算子的无界性所引起的问题。特别地,我们去掉了在Orlicz和Lorentz空间下的Gagliardo-Nirenberg不等式中不必要的假设。该方法在此背景下是一种新的方法,可以看作是一种适合于重排不变巴那赫函数空间的稀疏控制技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信