Xiaoqing Zhao , Tianfeng Yang , Bo Huang , Chunan Zhan , Jianzhuang Xiao , Qinghai Xie
{"title":"Disintegration characteristics and microscopic mechanism of soda residue-fly ash stabilized clay","authors":"Xiaoqing Zhao , Tianfeng Yang , Bo Huang , Chunan Zhan , Jianzhuang Xiao , Qinghai Xie","doi":"10.1016/j.jobe.2025.112676","DOIUrl":null,"url":null,"abstract":"<div><div>Water-induced disintegration is a critical issue in soil stabilization. In this study, soda residue (SR) and fly ash (FA) were mixed to improve the properties of high liquid limit clay (HLC), forming soda residue-fly ash stabilized clay (SRFSC), with cement and/or lime for further stabilization. The mix proportions of the SRFSC were optimized by the orthogonal method, using the compaction, unconfined compressive strength, shear, and disintegration tests. Meanwhile, microscopic tests were performed to reveal the possible mechanical mechanisms. The results showed that the SR and FA content are the primary determinants influencing the mechanical properties of SRFSC. When the base proportion is 70 % SR + 20 % FA + 10 % HLC, the strength is highest (2.45 MPa). At this proportion, the specimen with no cementitious material exhibits the best water disintegration resistance (WDR), reaching 107 min. Adding cement and lime can significantly enhance the WDR of the SRFSC, from complete disintegration at 0.28 min to remaining intact after soaking for 28 days. During field application, the cementitious materials content can be adjusted according to the actual conditions. The superior mechanical properties and WDR of SRFSC are mainly due to the good gradation and dense microstructure. The soda residue can provide abundant Ca<sup>2+</sup> to enhance both the mechanical properties and WDR of SRFSC.</div></div>","PeriodicalId":15064,"journal":{"name":"Journal of building engineering","volume":"107 ","pages":"Article 112676"},"PeriodicalIF":6.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of building engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352710225009131","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Water-induced disintegration is a critical issue in soil stabilization. In this study, soda residue (SR) and fly ash (FA) were mixed to improve the properties of high liquid limit clay (HLC), forming soda residue-fly ash stabilized clay (SRFSC), with cement and/or lime for further stabilization. The mix proportions of the SRFSC were optimized by the orthogonal method, using the compaction, unconfined compressive strength, shear, and disintegration tests. Meanwhile, microscopic tests were performed to reveal the possible mechanical mechanisms. The results showed that the SR and FA content are the primary determinants influencing the mechanical properties of SRFSC. When the base proportion is 70 % SR + 20 % FA + 10 % HLC, the strength is highest (2.45 MPa). At this proportion, the specimen with no cementitious material exhibits the best water disintegration resistance (WDR), reaching 107 min. Adding cement and lime can significantly enhance the WDR of the SRFSC, from complete disintegration at 0.28 min to remaining intact after soaking for 28 days. During field application, the cementitious materials content can be adjusted according to the actual conditions. The superior mechanical properties and WDR of SRFSC are mainly due to the good gradation and dense microstructure. The soda residue can provide abundant Ca2+ to enhance both the mechanical properties and WDR of SRFSC.
期刊介绍:
The Journal of Building Engineering is an interdisciplinary journal that covers all aspects of science and technology concerned with the whole life cycle of the built environment; from the design phase through to construction, operation, performance, maintenance and its deterioration.