Negative capacitance FinFETs for low power applications: A review

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
Ayushi Lamba , Rishu Chaujar , M. Jamal Deen
{"title":"Negative capacitance FinFETs for low power applications: A review","authors":"Ayushi Lamba ,&nbsp;Rishu Chaujar ,&nbsp;M. Jamal Deen","doi":"10.1016/j.micrna.2025.208177","DOIUrl":null,"url":null,"abstract":"<div><div>One of the most crucial factors that dictate the current-voltage (I–V) behavior of metal oxide semiconductor field-effect transistors (MOSFETs) is the source-to-drain barrier under the control of the gate voltage, V<sub>G</sub>. Boltzmann statistics predict that the gate voltage for a conventional MOSFET has to be as high as 60 mV to increase the magnitude of the current by a factor of ten. This “Boltzmann tyranny” puts a minimum voltage limit on the threshold voltage at about 0.3 V while preserving an on-off current ratio of five decades, I<sub>on</sub>/I<sub>off</sub>. In IoT (Internet of Things), where the dissipation of power is critical, devices that reduce the subthreshold swing are extremely desirable to ensure efficient computation. NC FinFETs have proven to be one of the more promising areas of research as they exhibit the potential to benefit from simplified fabrication, seamless process integration, suppression of SCEs, and better current drive through a lower subthreshold swing. This article provides an in-depth examination of the state-of-the-art in NC FinFET technology with regard to improvements in the most critical device parameters such as drain current, switching ratio, subthreshold swing, and hysteresis. Furthermore, a comparative analysis of various NC FinFETs for low-power applications, and a summary of the findings from multiple criteria such as fabrication feasibility and design constraints are given.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"205 ","pages":"Article 208177"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325001062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most crucial factors that dictate the current-voltage (I–V) behavior of metal oxide semiconductor field-effect transistors (MOSFETs) is the source-to-drain barrier under the control of the gate voltage, VG. Boltzmann statistics predict that the gate voltage for a conventional MOSFET has to be as high as 60 mV to increase the magnitude of the current by a factor of ten. This “Boltzmann tyranny” puts a minimum voltage limit on the threshold voltage at about 0.3 V while preserving an on-off current ratio of five decades, Ion/Ioff. In IoT (Internet of Things), where the dissipation of power is critical, devices that reduce the subthreshold swing are extremely desirable to ensure efficient computation. NC FinFETs have proven to be one of the more promising areas of research as they exhibit the potential to benefit from simplified fabrication, seamless process integration, suppression of SCEs, and better current drive through a lower subthreshold swing. This article provides an in-depth examination of the state-of-the-art in NC FinFET technology with regard to improvements in the most critical device parameters such as drain current, switching ratio, subthreshold swing, and hysteresis. Furthermore, a comparative analysis of various NC FinFETs for low-power applications, and a summary of the findings from multiple criteria such as fabrication feasibility and design constraints are given.
低功耗应用的负电容finfet:综述
决定金属氧化物半导体场效应晶体管(mosfet)电流-电压(I-V)行为的最关键因素之一是在栅极电压VG控制下的源极-漏极阻挡。玻尔兹曼统计预测,传统MOSFET的栅极电压必须高达60毫伏才能将电流的大小增加十倍。这种“玻尔兹曼暴政”将阈值电压的最低电压限制在0.3 V左右,同时保持50年的开关电流比,离子/开关。在物联网(IoT)中,功耗耗散是至关重要的,为了确保高效的计算,非常需要减少亚阈值摆动的设备。NC finfet已被证明是更有前途的研究领域之一,因为它们具有简化制造,无缝工艺集成,抑制sce以及通过更低的亚阈值摆动更好的电流驱动的潜力。本文深入研究了NC FinFET技术中最先进的技术,包括对漏极电流、开关比、亚阈值摆幅和滞后等最关键器件参数的改进。此外,本文还比较分析了各种用于低功耗应用的NC finfet,并从制造可行性和设计约束等多个标准总结了研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信