{"title":"Influence of the automorphism group of a graph on its PageRank scores of vertices","authors":"Dein Wong , Qi Zhou , Xinlei Wang","doi":"10.1016/j.aam.2025.102900","DOIUrl":null,"url":null,"abstract":"<div><div>Google's success derives in large part from its PageRank algorithm, which assign a score to every web page according to its importance. Recently, G. Modjtaba et al. (2021) <span><span>[19]</span></span> proved that similar vertices in a graph have the same PageRank score and they proposed a conjecture, suspecting that two graphs are completely non-Co-PR if they are non-Co-PR graphs. The investigation of this paper mainly concerns the influence of the automorphism group of a graph on its PageRank scores of vertices. The main results of this article are as follows.<ul><li><span>1.</span><span><div>Based on matrix analysis, two conditions on what kinds of vertices have the same PageRank score are obtained.</div></span></li><li><span>2.</span><span><div>Four techniques for constructing Co-PR graphs are established.</div></span></li><li><span>3.</span><span><div>A non-regular connected graph of order <em>n</em>, with <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span> as PR scores of most of its vertices, is constructed, which provides a negative answer to Modjtaba's conjecture above.</div></span></li></ul></div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"168 ","pages":"Article 102900"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825000624","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Google's success derives in large part from its PageRank algorithm, which assign a score to every web page according to its importance. Recently, G. Modjtaba et al. (2021) [19] proved that similar vertices in a graph have the same PageRank score and they proposed a conjecture, suspecting that two graphs are completely non-Co-PR if they are non-Co-PR graphs. The investigation of this paper mainly concerns the influence of the automorphism group of a graph on its PageRank scores of vertices. The main results of this article are as follows.
1.
Based on matrix analysis, two conditions on what kinds of vertices have the same PageRank score are obtained.
2.
Four techniques for constructing Co-PR graphs are established.
3.
A non-regular connected graph of order n, with as PR scores of most of its vertices, is constructed, which provides a negative answer to Modjtaba's conjecture above.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.