Complex cross-regional landslide susceptibility mapping by multi-source domain transfer learning

IF 8.5 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Yan Su , Jiayuan Fu , Xiaohe Lai , Chuan Lin , Lvyun Zhu , Xiudong Xie , Jun Jiang , Yaoxin Chen , Jingyu Huang , Wenhong Huang
{"title":"Complex cross-regional landslide susceptibility mapping by multi-source domain transfer learning","authors":"Yan Su ,&nbsp;Jiayuan Fu ,&nbsp;Xiaohe Lai ,&nbsp;Chuan Lin ,&nbsp;Lvyun Zhu ,&nbsp;Xiudong Xie ,&nbsp;Jun Jiang ,&nbsp;Yaoxin Chen ,&nbsp;Jingyu Huang ,&nbsp;Wenhong Huang","doi":"10.1016/j.gsf.2025.102053","DOIUrl":null,"url":null,"abstract":"<div><div>Landslide susceptibility evaluation plays an important role in disaster prevention and reduction. Feature-based transfer learning (TL) is an effective method for solving landslide susceptibility mapping (LSM) in target regions with no available samples. However, as the study area expands, the distribution of landslide types and triggering mechanisms becomes more diverse, leading to performance degradation in models relying on landslide evaluation knowledge from a single source domain due to domain feature shift. To address this, this study proposes a Multi-source Domain Adaptation Convolutional Neural Network (MDACNN), which combines the landslide prediction knowledge learned from two source domains to perform cross-regional LSM in complex large-scale areas. The method is validated through case studies in three regions located in southeastern coastal China and compared with single-source domain TL models (TCA-based models). The results demonstrate that MDACNN effectively integrates transfer knowledge from multiple source domains to learn diverse landslide-triggering mechanisms, thereby significantly reducing prediction bias inherent to single-source domain TL models, achieving an average improvement of 16.58% across all metrics. Moreover, the landslide susceptibility maps generated by MDACNN accurately quantify the spatial distribution of landslide risks in the target area, providing a powerful scientific and technological tool for landslide disaster management and prevention.</div></div>","PeriodicalId":12711,"journal":{"name":"Geoscience frontiers","volume":"16 4","pages":"Article 102053"},"PeriodicalIF":8.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience frontiers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674987125000581","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Landslide susceptibility evaluation plays an important role in disaster prevention and reduction. Feature-based transfer learning (TL) is an effective method for solving landslide susceptibility mapping (LSM) in target regions with no available samples. However, as the study area expands, the distribution of landslide types and triggering mechanisms becomes more diverse, leading to performance degradation in models relying on landslide evaluation knowledge from a single source domain due to domain feature shift. To address this, this study proposes a Multi-source Domain Adaptation Convolutional Neural Network (MDACNN), which combines the landslide prediction knowledge learned from two source domains to perform cross-regional LSM in complex large-scale areas. The method is validated through case studies in three regions located in southeastern coastal China and compared with single-source domain TL models (TCA-based models). The results demonstrate that MDACNN effectively integrates transfer knowledge from multiple source domains to learn diverse landslide-triggering mechanisms, thereby significantly reducing prediction bias inherent to single-source domain TL models, achieving an average improvement of 16.58% across all metrics. Moreover, the landslide susceptibility maps generated by MDACNN accurately quantify the spatial distribution of landslide risks in the target area, providing a powerful scientific and technological tool for landslide disaster management and prevention.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Geoscience frontiers
Geoscience frontiers Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
17.80
自引率
3.40%
发文量
147
审稿时长
35 days
期刊介绍: Geoscience Frontiers (GSF) is the Journal of China University of Geosciences (Beijing) and Peking University. It publishes peer-reviewed research articles and reviews in interdisciplinary fields of Earth and Planetary Sciences. GSF covers various research areas including petrology and geochemistry, lithospheric architecture and mantle dynamics, global tectonics, economic geology and fuel exploration, geophysics, stratigraphy and paleontology, environmental and engineering geology, astrogeology, and the nexus of resources-energy-emissions-climate under Sustainable Development Goals. The journal aims to bridge innovative, provocative, and challenging concepts and models in these fields, providing insights on correlations and evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信