Yan Su , Jiayuan Fu , Xiaohe Lai , Chuan Lin , Lvyun Zhu , Xiudong Xie , Jun Jiang , Yaoxin Chen , Jingyu Huang , Wenhong Huang
{"title":"Complex cross-regional landslide susceptibility mapping by multi-source domain transfer learning","authors":"Yan Su , Jiayuan Fu , Xiaohe Lai , Chuan Lin , Lvyun Zhu , Xiudong Xie , Jun Jiang , Yaoxin Chen , Jingyu Huang , Wenhong Huang","doi":"10.1016/j.gsf.2025.102053","DOIUrl":null,"url":null,"abstract":"<div><div>Landslide susceptibility evaluation plays an important role in disaster prevention and reduction. Feature-based transfer learning (TL) is an effective method for solving landslide susceptibility mapping (LSM) in target regions with no available samples. However, as the study area expands, the distribution of landslide types and triggering mechanisms becomes more diverse, leading to performance degradation in models relying on landslide evaluation knowledge from a single source domain due to domain feature shift. To address this, this study proposes a Multi-source Domain Adaptation Convolutional Neural Network (MDACNN), which combines the landslide prediction knowledge learned from two source domains to perform cross-regional LSM in complex large-scale areas. The method is validated through case studies in three regions located in southeastern coastal China and compared with single-source domain TL models (TCA-based models). The results demonstrate that MDACNN effectively integrates transfer knowledge from multiple source domains to learn diverse landslide-triggering mechanisms, thereby significantly reducing prediction bias inherent to single-source domain TL models, achieving an average improvement of 16.58% across all metrics. Moreover, the landslide susceptibility maps generated by MDACNN accurately quantify the spatial distribution of landslide risks in the target area, providing a powerful scientific and technological tool for landslide disaster management and prevention.</div></div>","PeriodicalId":12711,"journal":{"name":"Geoscience frontiers","volume":"16 4","pages":"Article 102053"},"PeriodicalIF":8.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience frontiers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674987125000581","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Landslide susceptibility evaluation plays an important role in disaster prevention and reduction. Feature-based transfer learning (TL) is an effective method for solving landslide susceptibility mapping (LSM) in target regions with no available samples. However, as the study area expands, the distribution of landslide types and triggering mechanisms becomes more diverse, leading to performance degradation in models relying on landslide evaluation knowledge from a single source domain due to domain feature shift. To address this, this study proposes a Multi-source Domain Adaptation Convolutional Neural Network (MDACNN), which combines the landslide prediction knowledge learned from two source domains to perform cross-regional LSM in complex large-scale areas. The method is validated through case studies in three regions located in southeastern coastal China and compared with single-source domain TL models (TCA-based models). The results demonstrate that MDACNN effectively integrates transfer knowledge from multiple source domains to learn diverse landslide-triggering mechanisms, thereby significantly reducing prediction bias inherent to single-source domain TL models, achieving an average improvement of 16.58% across all metrics. Moreover, the landslide susceptibility maps generated by MDACNN accurately quantify the spatial distribution of landslide risks in the target area, providing a powerful scientific and technological tool for landslide disaster management and prevention.
Geoscience frontiersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
17.80
自引率
3.40%
发文量
147
审稿时长
35 days
期刊介绍:
Geoscience Frontiers (GSF) is the Journal of China University of Geosciences (Beijing) and Peking University. It publishes peer-reviewed research articles and reviews in interdisciplinary fields of Earth and Planetary Sciences. GSF covers various research areas including petrology and geochemistry, lithospheric architecture and mantle dynamics, global tectonics, economic geology and fuel exploration, geophysics, stratigraphy and paleontology, environmental and engineering geology, astrogeology, and the nexus of resources-energy-emissions-climate under Sustainable Development Goals. The journal aims to bridge innovative, provocative, and challenging concepts and models in these fields, providing insights on correlations and evolution.