Hany I. Mohamed , Hanaa A. ElKhawaga , Hany M. Abd El-Lateef , Sahar M. Ibrahim , Laila M. Reda , Amal M. Metwally
{"title":"Development of novel coordination polymeric metal complexes with potent antimicrobial and antitumor activity","authors":"Hany I. Mohamed , Hanaa A. ElKhawaga , Hany M. Abd El-Lateef , Sahar M. Ibrahim , Laila M. Reda , Amal M. Metwally","doi":"10.1016/j.eurpolymj.2025.113944","DOIUrl":null,"url":null,"abstract":"<div><div>The development of novel multi-target compounds with multiple therapeutic applications represents an excellent strategy for replacing the drug combination approach. Such strategy is beneficial in reducing or preventing the side effects of the combined drugs. Organometallic complexes, particularly those with polymeric structures, demonstrate dual functionality against microbial pathogens and tumor cells. Herein, a new series of polymeric metal complexes with strong antitumor and antimicrobial activity was developed. First, two novel coordination polymers (CP1 and CP2) were synthesized through exchanging the active phthalimidoxy moiety in poly <em>N</em>-methacyloxyphthalimide [poly(NMPI)] with two Schiff base derivatives (S1 and S2). Then, four polymeric metal complexes were constructed by coordinating CP1 and CP2 with copper and nickel acetates, and their chemical compositions were deduced based on various spectroscopic tools. Additionally, the thermal behavior of complexes was investigated by thermogravimetric analysis while their geometries were calculated <em>via</em> molecular modeling. The results of the antimicrobial activity revealed that almost all complexes possess excellent antifungal and antibacterial efficiency against the selected pathogens. Simultaneously, the cytotoxicity potency of the coordination polymers and their complexes was evaluated against human cancer (HepG2) and normal (WI-38) cell lines. The results exhibited that Ni-CP2 has a very good activity in diminishing the replication of HepG2 cells, which is better than that of sorafenib and comparable to doxorubicin. Overall, copper and nickel polymeric complexes give a promising insight for developing new potent antitumor and antimicrobial agents.</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"232 ","pages":"Article 113944"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014305725002320","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The development of novel multi-target compounds with multiple therapeutic applications represents an excellent strategy for replacing the drug combination approach. Such strategy is beneficial in reducing or preventing the side effects of the combined drugs. Organometallic complexes, particularly those with polymeric structures, demonstrate dual functionality against microbial pathogens and tumor cells. Herein, a new series of polymeric metal complexes with strong antitumor and antimicrobial activity was developed. First, two novel coordination polymers (CP1 and CP2) were synthesized through exchanging the active phthalimidoxy moiety in poly N-methacyloxyphthalimide [poly(NMPI)] with two Schiff base derivatives (S1 and S2). Then, four polymeric metal complexes were constructed by coordinating CP1 and CP2 with copper and nickel acetates, and their chemical compositions were deduced based on various spectroscopic tools. Additionally, the thermal behavior of complexes was investigated by thermogravimetric analysis while their geometries were calculated via molecular modeling. The results of the antimicrobial activity revealed that almost all complexes possess excellent antifungal and antibacterial efficiency against the selected pathogens. Simultaneously, the cytotoxicity potency of the coordination polymers and their complexes was evaluated against human cancer (HepG2) and normal (WI-38) cell lines. The results exhibited that Ni-CP2 has a very good activity in diminishing the replication of HepG2 cells, which is better than that of sorafenib and comparable to doxorubicin. Overall, copper and nickel polymeric complexes give a promising insight for developing new potent antitumor and antimicrobial agents.
期刊介绍:
European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas:
Polymer synthesis and functionalization
• Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers.
Stimuli-responsive polymers
• Including shape memory and self-healing polymers.
Supramolecular polymers and self-assembly
• Molecular recognition and higher order polymer structures.
Renewable and sustainable polymers
• Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites.
Polymers at interfaces and surfaces
• Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications.
Biomedical applications and nanomedicine
• Polymers for regenerative medicine, drug delivery molecular release and gene therapy
The scope of European Polymer Journal no longer includes Polymer Physics.