Susanta Mahato , Swades Pal , P.K. Joshi , Andreas Matzarakis , Paolo Tarolli , Vicky Anand
{"title":"Early summer warming amplification threats towards sustainable development goals (SDGs) in India","authors":"Susanta Mahato , Swades Pal , P.K. Joshi , Andreas Matzarakis , Paolo Tarolli , Vicky Anand","doi":"10.1016/j.ecoinf.2025.103156","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the anomalous surge in early summer Land Surface Temperature (LST) in India and its potential repercussions on various sectors, such as food security, energy resources, and public health. The research also assesses the implications of the accomplishment of the Sustainable Development Goals (SDGs) throughout the early summer. Analyzing data from 2001 to 2022, the findings reveal that early summer LST was notably increased, with daytime temperatures exceeding mean LST by 3.5–4.14 °C and nighttime temperatures by 0.83 to 2.41 °C. Anomalous positive Standard Anomaly (StA) deviations were prevalent in north-west, central northeast, west-central, and hilly regions during the day. Trend analysis indicated varying StA responses across six homogeneous monsoon regions, with an overall positive trend observed in most areas. Surprisingly, Sea Surface Temperature (SST), which typically influences summer heating, was not the primary driver in 2022. Instead, a prolonged rain deficit in significant parts of India was identified as the cause. Regression analysis between StA and crop yields showed statistically insignificant associations for most production regions, except for a detrimental impact on winter crop yields. Energy deficits of up to 15 % were recorded in heat-affected states. The study also considered potential health issues arising from summer warming. These cumulative effects pose significant challenges to India's economic growth. The study assesses mitigation strategies discussed at the COP27 summit to address early summer warming. The findings provide valuable insights for developing preparedness and resilience plans to mitigate these issues.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"88 ","pages":"Article 103156"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954125001657","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the anomalous surge in early summer Land Surface Temperature (LST) in India and its potential repercussions on various sectors, such as food security, energy resources, and public health. The research also assesses the implications of the accomplishment of the Sustainable Development Goals (SDGs) throughout the early summer. Analyzing data from 2001 to 2022, the findings reveal that early summer LST was notably increased, with daytime temperatures exceeding mean LST by 3.5–4.14 °C and nighttime temperatures by 0.83 to 2.41 °C. Anomalous positive Standard Anomaly (StA) deviations were prevalent in north-west, central northeast, west-central, and hilly regions during the day. Trend analysis indicated varying StA responses across six homogeneous monsoon regions, with an overall positive trend observed in most areas. Surprisingly, Sea Surface Temperature (SST), which typically influences summer heating, was not the primary driver in 2022. Instead, a prolonged rain deficit in significant parts of India was identified as the cause. Regression analysis between StA and crop yields showed statistically insignificant associations for most production regions, except for a detrimental impact on winter crop yields. Energy deficits of up to 15 % were recorded in heat-affected states. The study also considered potential health issues arising from summer warming. These cumulative effects pose significant challenges to India's economic growth. The study assesses mitigation strategies discussed at the COP27 summit to address early summer warming. The findings provide valuable insights for developing preparedness and resilience plans to mitigate these issues.
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.