An easy and fast method for landfill identification by image-based deep learning

IF 11.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Zhuo Zhi , Shijun Ma , Jinjin Chen , Chuanlian Sun , Jing Meng , Zhiying Yang , Peipei Chen , Chuanbin Zhou
{"title":"An easy and fast method for landfill identification by image-based deep learning","authors":"Zhuo Zhi ,&nbsp;Shijun Ma ,&nbsp;Jinjin Chen ,&nbsp;Chuanlian Sun ,&nbsp;Jing Meng ,&nbsp;Zhiying Yang ,&nbsp;Peipei Chen ,&nbsp;Chuanbin Zhou","doi":"10.1016/j.resconrec.2025.108322","DOIUrl":null,"url":null,"abstract":"<div><div>Landfills are fundamental urban infrastructures, yet improper operation causes negative impacts on the environment and public health. The accurate geographic information of landfills is often lacking, limiting effective monitoring and management. We develop a methodology that leverages remote sensing and deep learning to efficiently identify landfill locations from Google Maps, which includes: (1) creating a multi-resolution image database of landfill and similar features; (2) introducing a plug-and-play target detection module based on contrastive learning to improve the model's ability to distinguish similar targets and landfills. Experimental results show that using the landfill image dataset with a spatial resolution of 2.15 m can improve detection speed and storage efficiency while ensuring detection accuracy. InternImage-CL achieves the best [email protected] of 0.817 with an acceptable training time of 12.75 h at this dataset. This study presents an efficient and scalable method for identifying landfills, providing a methodological basis for digital landfill management and policy development.</div></div>","PeriodicalId":21153,"journal":{"name":"Resources Conservation and Recycling","volume":"219 ","pages":"Article 108322"},"PeriodicalIF":11.2000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Conservation and Recycling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921344925002010","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Landfills are fundamental urban infrastructures, yet improper operation causes negative impacts on the environment and public health. The accurate geographic information of landfills is often lacking, limiting effective monitoring and management. We develop a methodology that leverages remote sensing and deep learning to efficiently identify landfill locations from Google Maps, which includes: (1) creating a multi-resolution image database of landfill and similar features; (2) introducing a plug-and-play target detection module based on contrastive learning to improve the model's ability to distinguish similar targets and landfills. Experimental results show that using the landfill image dataset with a spatial resolution of 2.15 m can improve detection speed and storage efficiency while ensuring detection accuracy. InternImage-CL achieves the best [email protected] of 0.817 with an acceptable training time of 12.75 h at this dataset. This study presents an efficient and scalable method for identifying landfills, providing a methodological basis for digital landfill management and policy development.

Abstract Image

基于图像深度学习的垃圾填埋场识别方法
垃圾填埋场是城市的基础设施,但其运营不当会对环境和公众健康造成负面影响。垃圾填埋场往往缺乏准确的地理信息,限制了有效的监测和管理。我们开发了一种利用遥感和深度学习从谷歌地图中有效识别垃圾填埋场位置的方法,其中包括:(1)创建垃圾填埋场和类似特征的多分辨率图像数据库;(2)引入基于对比学习的即插即用目标检测模块,提高模型对相似目标和垃圾填埋场的区分能力。实验结果表明,使用空间分辨率为2.15 m的垃圾填埋场图像数据集可以在保证检测精度的同时提高检测速度和存储效率。在该数据集上,InternImage-CL以12.75 h的可接受训练时间达到了0.817的最佳[email protected]。本研究提出了一种有效且可扩展的识别垃圾填埋场的方法,为数字垃圾填埋场管理和政策制定提供了方法基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Resources Conservation and Recycling
Resources Conservation and Recycling 环境科学-工程:环境
CiteScore
22.90
自引率
6.10%
发文量
625
审稿时长
23 days
期刊介绍: The journal Resources, Conservation & Recycling welcomes contributions from research, which consider sustainable management and conservation of resources. The journal prioritizes understanding the transformation processes crucial for transitioning toward more sustainable production and consumption systems. It highlights technological, economic, institutional, and policy aspects related to specific resource management practices such as conservation, recycling, and resource substitution, as well as broader strategies like improving resource productivity and restructuring production and consumption patterns. Contributions may address regional, national, or international scales and can range from individual resources or technologies to entire sectors or systems. Authors are encouraged to explore scientific and methodological issues alongside practical, environmental, and economic implications. However, manuscripts focusing solely on laboratory experiments without discussing their broader implications will not be considered for publication in the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信