Juntong Hu , Wenjiang Yang , Difan Zhou , Peng Zhao , Mingliang Bai , Juzhuang Yan , Haoran Jiang , Tianxin Lan
{"title":"Split pulsed magnet combining high peak central magnetic field and long rise time for pulsed field magnetization of high temperature superconductors","authors":"Juntong Hu , Wenjiang Yang , Difan Zhou , Peng Zhao , Mingliang Bai , Juzhuang Yan , Haoran Jiang , Tianxin Lan","doi":"10.1016/j.supcon.2025.100166","DOIUrl":null,"url":null,"abstract":"<div><div>Split pulsed magnets are widely employed in high temperature superconducting (HTS) motor armature winding as magnetizing coils to implement in-situ pulsed field magnetization (PFM) for HTS field pole magnets. We have designed and developed a compact and portable split pulsed magnet, that balances a peak central magnetic field of nearly 7 T and a rise time of 24 ms, making it particularly suitable for PFM of HTS materials at lower temperatures. Single and two-step PFM experiments of HTS GdBa <sub>2</sub>Cu<sub>3</sub>O<span><math><msub><mrow></mrow><mrow><mn>7</mn><mo>−</mo><mi>δ</mi></mrow></msub></math></span> (GdBCO) bulk in different temperature ranges are conducted and the maximum trapped fields <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> are observed to be <span><math><mrow><mo>></mo><mn>3</mn></mrow></math></span> T in the 40–50 K temperature range and nearly 4 T at 30 K in a 30 mm diameter GdBCO bulk. The trapped field results validate the excellent PFM ability of this designed split pulsed magnet and indicate a high trapped field (close to 4 T) can also be obtained in a coreless double armature. Moreover, multi-physical field responses of the split pulsed magnet during discharge are analyzed by a 3D field-circuit coupling model, which manifests that the split pulsed magnet is in a stable and safe operating state even under the highest charge voltage. Finally, this study may provide a novel clue for the development of coreless HTS bulk motors and suggest that HTS coreless motors can maintain a high air gap magnetic field while avoiding losses and thrust or torque fluctuations caused by iron core saturation under high magnetic fields.</div></div>","PeriodicalId":101185,"journal":{"name":"Superconductivity","volume":"14 ","pages":"Article 100166"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772830725000171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Split pulsed magnets are widely employed in high temperature superconducting (HTS) motor armature winding as magnetizing coils to implement in-situ pulsed field magnetization (PFM) for HTS field pole magnets. We have designed and developed a compact and portable split pulsed magnet, that balances a peak central magnetic field of nearly 7 T and a rise time of 24 ms, making it particularly suitable for PFM of HTS materials at lower temperatures. Single and two-step PFM experiments of HTS GdBa 2Cu3O (GdBCO) bulk in different temperature ranges are conducted and the maximum trapped fields are observed to be T in the 40–50 K temperature range and nearly 4 T at 30 K in a 30 mm diameter GdBCO bulk. The trapped field results validate the excellent PFM ability of this designed split pulsed magnet and indicate a high trapped field (close to 4 T) can also be obtained in a coreless double armature. Moreover, multi-physical field responses of the split pulsed magnet during discharge are analyzed by a 3D field-circuit coupling model, which manifests that the split pulsed magnet is in a stable and safe operating state even under the highest charge voltage. Finally, this study may provide a novel clue for the development of coreless HTS bulk motors and suggest that HTS coreless motors can maintain a high air gap magnetic field while avoiding losses and thrust or torque fluctuations caused by iron core saturation under high magnetic fields.