On arrangements of quadrics in decomposing the parameter space of 3D digitized rigid motions

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Kacper Pluta , Guillaume Moroz , Yukiko Kenmochi , Pascal Romon
{"title":"On arrangements of quadrics in decomposing the parameter space of 3D digitized rigid motions","authors":"Kacper Pluta ,&nbsp;Guillaume Moroz ,&nbsp;Yukiko Kenmochi ,&nbsp;Pascal Romon","doi":"10.1016/j.jsc.2025.102447","DOIUrl":null,"url":null,"abstract":"<div><div>Computing the arrangement of quadrics in 3D is a fundamental problem in symbolic computation, with challenges arising when handling degenerate cases and asymptotic critical values. State-of-the-art methods typically require a generic change of coordinates to manage these asymptotes, rendering certain problems intractable. A specific instance of this challenge appears in digital geometry, where comparing 3D shapes up to isometry requires applying a 3D rigid motion on <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> and mapping the result back to <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, a process typically achieved via a digitization operator. However, such motions do not preserve the topology of digital objects, making the analysis of digitized rigid motions crucial. Our main contribution is the decomposition of the 6D parameter space of digitized rigid motions for image patches of radius up to three. This problem reduces to computing the arrangement of up to 741 quadrics, some of which are degenerate. To address the computational challenges, we introduce and implement a new algorithm for computing arrangements of quadrics in 3D, specifically designed to handle degenerate directions and asymptotic critical values. This approach allows us to overcome the limitations of existing methods, making the problem tractable in the context of digital geometry.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"131 ","pages":"Article 102447"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S074771712500029X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Computing the arrangement of quadrics in 3D is a fundamental problem in symbolic computation, with challenges arising when handling degenerate cases and asymptotic critical values. State-of-the-art methods typically require a generic change of coordinates to manage these asymptotes, rendering certain problems intractable. A specific instance of this challenge appears in digital geometry, where comparing 3D shapes up to isometry requires applying a 3D rigid motion on Z3 and mapping the result back to Z3, a process typically achieved via a digitization operator. However, such motions do not preserve the topology of digital objects, making the analysis of digitized rigid motions crucial. Our main contribution is the decomposition of the 6D parameter space of digitized rigid motions for image patches of radius up to three. This problem reduces to computing the arrangement of up to 741 quadrics, some of which are degenerate. To address the computational challenges, we introduce and implement a new algorithm for computing arrangements of quadrics in 3D, specifically designed to handle degenerate directions and asymptotic critical values. This approach allows us to overcome the limitations of existing methods, making the problem tractable in the context of digital geometry.
论分解三维数字化刚性运动参数空间的四边形排列
计算三维二次曲面的排列是符号计算中的一个基本问题,在处理退化情况和渐近临界值时遇到了挑战。最先进的方法通常需要一般的坐标变化来处理这些渐近线,这使得某些问题变得难以解决。这一挑战的一个具体实例出现在数字几何中,将3D形状与等距几何进行比较需要在Z3上应用3D刚性运动,并将结果映射回Z3,这一过程通常通过数字化算子实现。然而,这样的运动并不能保持数字物体的拓扑结构,这使得对数字化刚性运动的分析变得至关重要。我们的主要贡献是对半径为3的图像斑块的数字化刚性运动的6D参数空间的分解。这个问题简化为计算多达741个二次曲面的排列,其中一些是退化的。为了解决计算挑战,我们引入并实现了一种新的算法,用于计算三维二次曲面的排列,专门用于处理退化方向和渐近临界值。这种方法使我们能够克服现有方法的局限性,使问题在数字几何的背景下易于处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信