H.R. Kotadia , N. Bareker , M.H. Khan , J.I. Ahuir-Torres , A. Das
{"title":"Aluminium recycling: A critical review of iron-bearing intermetallics in aluminium alloys","authors":"H.R. Kotadia , N. Bareker , M.H. Khan , J.I. Ahuir-Torres , A. Das","doi":"10.1016/j.mtsust.2025.101119","DOIUrl":null,"url":null,"abstract":"<div><div>This review provides a comprehensive analysis of the current understanding of Fe-bearing intermetallic compounds (IMCs) in cast and wrought aluminium (Al) alloys, also covering their significance in recycling and sustainable materials development. It explores the various types of Fe-bearing IMCs, their nucleation and growth mechanisms under diverse processing conditions, with a particular focus on chemical, physical, and thermal modification strategies aimed at mitigating their detrimental effects. The review further examines the impact of these IMCs on defect formation, mechanical performance, and corrosion resistance. While Al recycling offers substantial energy savings (up to 95 %), the accumulation of impurities, notably Fe. This work provides practical insights to guide materials scientists and engineers in optimising processing conditions for Al alloys with elevated Fe content or those derived from recycled scrap. Understanding the behaviour and control of Fe-bearing IMCs is essential for improving alloy performance and advancing the sustainable production of Al.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"30 ","pages":"Article 101119"},"PeriodicalIF":7.1000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S258923472500048X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This review provides a comprehensive analysis of the current understanding of Fe-bearing intermetallic compounds (IMCs) in cast and wrought aluminium (Al) alloys, also covering their significance in recycling and sustainable materials development. It explores the various types of Fe-bearing IMCs, their nucleation and growth mechanisms under diverse processing conditions, with a particular focus on chemical, physical, and thermal modification strategies aimed at mitigating their detrimental effects. The review further examines the impact of these IMCs on defect formation, mechanical performance, and corrosion resistance. While Al recycling offers substantial energy savings (up to 95 %), the accumulation of impurities, notably Fe. This work provides practical insights to guide materials scientists and engineers in optimising processing conditions for Al alloys with elevated Fe content or those derived from recycled scrap. Understanding the behaviour and control of Fe-bearing IMCs is essential for improving alloy performance and advancing the sustainable production of Al.
期刊介绍:
Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science.
With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.