{"title":"Multiscroll hidden attractor in memristive autapse neuron model and its memristor-based scroll control and application in image encryption","authors":"Zhiqiang Wan , Yi-Fei Pu , Qiang Lai","doi":"10.1016/j.neunet.2025.107473","DOIUrl":null,"url":null,"abstract":"<div><div>In current neurodynamic studies, memristor models using polynomial or multiple nested composite functions are primarily employed to generate multiscroll attractors, but their complex mathematical form restricts both research and application. To address this issue, without relying on polynomial and multiple nested composite functions, this study devises a unique memristor model and a memristive autapse HR (MAHR) neuron model featuring multiscroll hidden attractor. Specially, the quantity of scrolls within the multiscroll hidden attractors is regulated by simulation time. Besides, a simple control factor is incorporated into the memristor to improve the MAHR neuron model. Numerical analysis further finds that the quantity of scrolls within the multiscroll hidden attractor from the improved MAHR neuron model can be conveniently adjusted by only changing a single parameter or initial condition of the memristor. Moreover, a microcontroller-based hardware experiment is conducted to confirm that the improved MAHR neuron model is physically feasible. Finally, an elegant image encryption scheme is proposed to explore the real-world applicability of the improved MAHR neuron model.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"188 ","pages":"Article 107473"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025003521","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In current neurodynamic studies, memristor models using polynomial or multiple nested composite functions are primarily employed to generate multiscroll attractors, but their complex mathematical form restricts both research and application. To address this issue, without relying on polynomial and multiple nested composite functions, this study devises a unique memristor model and a memristive autapse HR (MAHR) neuron model featuring multiscroll hidden attractor. Specially, the quantity of scrolls within the multiscroll hidden attractors is regulated by simulation time. Besides, a simple control factor is incorporated into the memristor to improve the MAHR neuron model. Numerical analysis further finds that the quantity of scrolls within the multiscroll hidden attractor from the improved MAHR neuron model can be conveniently adjusted by only changing a single parameter or initial condition of the memristor. Moreover, a microcontroller-based hardware experiment is conducted to confirm that the improved MAHR neuron model is physically feasible. Finally, an elegant image encryption scheme is proposed to explore the real-world applicability of the improved MAHR neuron model.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.