{"title":"Nyström subsampling for functional linear regression","authors":"Jun Fan , Jiading Liu , Lei Shi","doi":"10.1016/j.jat.2025.106176","DOIUrl":null,"url":null,"abstract":"<div><div>Kernel methods have proven to be highly effective for functional data analysis, demonstrating significant theoretical and practical success over the past two decades. However, their computational complexity and storage requirements hinder their direct application to large-scale functional data learning problems. In this paper, we address this limitation by investigating the theoretical properties of the Nyström subsampling method within the framework of the functional linear regression model and reproducing kernel Hilbert space. Our proposed algorithm not only overcomes the computational challenges but also achieves the minimax optimal rate of convergence for the excess prediction risk, provided an appropriate subsampling size is chosen. Our error analysis relies on the approximation of integral operators induced by the reproducing kernel and covariance function.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"310 ","pages":"Article 106176"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904525000346","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Kernel methods have proven to be highly effective for functional data analysis, demonstrating significant theoretical and practical success over the past two decades. However, their computational complexity and storage requirements hinder their direct application to large-scale functional data learning problems. In this paper, we address this limitation by investigating the theoretical properties of the Nyström subsampling method within the framework of the functional linear regression model and reproducing kernel Hilbert space. Our proposed algorithm not only overcomes the computational challenges but also achieves the minimax optimal rate of convergence for the excess prediction risk, provided an appropriate subsampling size is chosen. Our error analysis relies on the approximation of integral operators induced by the reproducing kernel and covariance function.
期刊介绍:
The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others:
• Classical approximation
• Abstract approximation
• Constructive approximation
• Degree of approximation
• Fourier expansions
• Interpolation of operators
• General orthogonal systems
• Interpolation and quadratures
• Multivariate approximation
• Orthogonal polynomials
• Padé approximation
• Rational approximation
• Spline functions of one and several variables
• Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds
• Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth)
• Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis
• Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth)
• Gabor (Weyl-Heisenberg) expansions and sampling theory.