High order difference schemes for nonlinear Riesz space variable-order fractional diffusion equations

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Qiu-Ya Wang
{"title":"High order difference schemes for nonlinear Riesz space variable-order fractional diffusion equations","authors":"Qiu-Ya Wang","doi":"10.1016/j.camwa.2025.04.010","DOIUrl":null,"url":null,"abstract":"<div><div>This article aims at studying new finite difference methods for one-dimensional and two-dimensional nonlinear Riesz space variable-order (VO) fractional diffusion equations. In the presented model, fractional derivatives are defined in the Riemann-Liouville type. Based on 4-point weighted-shifted-Grünwald-difference (4WSGD) operators for Riemann-Liouville constant-order fractional derivatives, which have a free parameter and have at least third order accuracy, we derive variable-order 4WSGD operators for space Riesz variable-order fractional derivatives. In order that the fully discrete schemes exhibit robust stability and can handle the nonlinear term efficiently, we employ the implicit Euler (IE) method to discretize the time derivative, which leads to IE-4WSGD schemes. The stability and convergence properties of the IE-4WSGD schemes are analyzed theoretically. Additionally, a parameter selection strategy is derived for 4WSGD schemes and banded preconditioners are put forward to accelerate the GMRES methods for solving the discretization linear systems. Numerical results demonstrate the effectiveness of the proposed IE-4WSGD schemes and preconditioners.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"188 ","pages":"Pages 221-243"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125001555","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This article aims at studying new finite difference methods for one-dimensional and two-dimensional nonlinear Riesz space variable-order (VO) fractional diffusion equations. In the presented model, fractional derivatives are defined in the Riemann-Liouville type. Based on 4-point weighted-shifted-Grünwald-difference (4WSGD) operators for Riemann-Liouville constant-order fractional derivatives, which have a free parameter and have at least third order accuracy, we derive variable-order 4WSGD operators for space Riesz variable-order fractional derivatives. In order that the fully discrete schemes exhibit robust stability and can handle the nonlinear term efficiently, we employ the implicit Euler (IE) method to discretize the time derivative, which leads to IE-4WSGD schemes. The stability and convergence properties of the IE-4WSGD schemes are analyzed theoretically. Additionally, a parameter selection strategy is derived for 4WSGD schemes and banded preconditioners are put forward to accelerate the GMRES methods for solving the discretization linear systems. Numerical results demonstrate the effectiveness of the proposed IE-4WSGD schemes and preconditioners.
非线性Riesz空间变阶分数扩散方程的高阶差分格式
本文旨在研究一维和二维非线性Riesz空间变阶分数扩散方程的有限差分新方法。在给出的模型中,分数阶导数被定义为Riemann-Liouville型。基于具有自由参数且至少具有三阶精度的Riemann-Liouville常阶导数的4点加权位移- grn -差分(4WSGD)算子,导出了空间Riesz变阶分数导数的变阶4WSGD算子。为了使完全离散格式具有鲁棒稳定性,并能有效地处理非线性项,我们采用隐式欧拉(IE)方法对时间导数进行离散化,得到了IE- 4wsgd格式。从理论上分析了IE-4WSGD方案的稳定性和收敛性。此外,推导了4WSGD方案的参数选择策略,并提出了带状预调节器,以加快GMRES方法求解离散化线性系统的速度。数值结果验证了所提出的IE-4WSGD方案和前置条件的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信