{"title":"MXenes and their composites for high-performance detection of pharmaceuticals and pesticides: A comprehensive review","authors":"Ishika Rana , Vishnu Kumar Malakar , Kumar Rakesh Ranjan , Chandrabhan Verma , Akram AlFantazi , Prashant Singh , Kamlesh Kumari","doi":"10.1016/j.compositesb.2025.112521","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing concerns over environmental pollution and human health hazards caused by pesticides and pharmaceutical residues have driven significant research into the development of highly sensitive and selective electrochemical sensors. MXenes, a class of two-dimensional (2D) transition metal carbides and nitrides along with MXene-based composites, have emerged as promising candidates for electrochemical sensing due to their unique physicochemical properties, including high electrical conductivity, large surface area, hydrophilicity, and tunable surface chemistry. Herein, we have comprehensively discussed the role of MXenes and their composites in the electrochemical detection of drugs and pesticides. Further, they can be classified based on their structural dimensions and explore their fundamental properties, including conductivity, electrochemical stability, mechanical integrity, and chemical reactivity, which govern their sensing performance. However, MXenes can be easily oxidized and undergo gradual structural degradation, which may impact performance over a long time. Therefore, the need for MXene-based composites is highlighted to address the limitations of pristine MXenes and enhance their selectivity, stability, and sensitivity for detecting trace-level analytes. The recent advancements in MXenes modified electrochemical sensors for detecting pesticides and drugs, critically analyzing their sensing mechanisms, detection limits, and response times.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"302 ","pages":"Article 112521"},"PeriodicalIF":12.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825004226","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing concerns over environmental pollution and human health hazards caused by pesticides and pharmaceutical residues have driven significant research into the development of highly sensitive and selective electrochemical sensors. MXenes, a class of two-dimensional (2D) transition metal carbides and nitrides along with MXene-based composites, have emerged as promising candidates for electrochemical sensing due to their unique physicochemical properties, including high electrical conductivity, large surface area, hydrophilicity, and tunable surface chemistry. Herein, we have comprehensively discussed the role of MXenes and their composites in the electrochemical detection of drugs and pesticides. Further, they can be classified based on their structural dimensions and explore their fundamental properties, including conductivity, electrochemical stability, mechanical integrity, and chemical reactivity, which govern their sensing performance. However, MXenes can be easily oxidized and undergo gradual structural degradation, which may impact performance over a long time. Therefore, the need for MXene-based composites is highlighted to address the limitations of pristine MXenes and enhance their selectivity, stability, and sensitivity for detecting trace-level analytes. The recent advancements in MXenes modified electrochemical sensors for detecting pesticides and drugs, critically analyzing their sensing mechanisms, detection limits, and response times.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.