Chunliang Mai , Lixin Zhang , Omar Behar , Xue Hu , Xuewei Chao
{"title":"Adaptive singular spectral decomposition hybrid framework with quadratic error correction for wind power prediction","authors":"Chunliang Mai , Lixin Zhang , Omar Behar , Xue Hu , Xuewei Chao","doi":"10.1016/j.isci.2025.112360","DOIUrl":null,"url":null,"abstract":"<div><div>High-precision wind power forecasting is essential for grid scheduling and renewable energy utilization. Wind data’s nonlinear, stochastic, and multi-scale characteristics create prediction challenges. This study proposes a hybrid model integrating adaptive improved singular spectrum analysis (ISSA), optimized bidirectional temporal convolutional network–bidirectional long short-term memory (BiTCN-BiLSTM) networks, and AdaBoost ensemble learning. Adaptive ISSA provides parameter-free, data-driven modal decomposition to reduce noise. Hybrid strategy-enhanced dung beetle optimization (OTDBO) fine-tunes hyperparameters of BiTCN-BiLSTM, and AdaBoost dynamically corrects errors, significantly improving robustness. Tests using seasonal datasets from Dabancheng wind farm (China) show substantial performance improvement (mean absolute error [MAE] reduced by 45.4%, root-mean-square error (RMSE) by 47.6%, <em>p</em> < 0.001), and training time reduced by 12.1%–21.3%. This method offers accurate, scalable forecasting for reliable renewable energy integration.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"28 5","pages":"Article 112360"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004225006212","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
High-precision wind power forecasting is essential for grid scheduling and renewable energy utilization. Wind data’s nonlinear, stochastic, and multi-scale characteristics create prediction challenges. This study proposes a hybrid model integrating adaptive improved singular spectrum analysis (ISSA), optimized bidirectional temporal convolutional network–bidirectional long short-term memory (BiTCN-BiLSTM) networks, and AdaBoost ensemble learning. Adaptive ISSA provides parameter-free, data-driven modal decomposition to reduce noise. Hybrid strategy-enhanced dung beetle optimization (OTDBO) fine-tunes hyperparameters of BiTCN-BiLSTM, and AdaBoost dynamically corrects errors, significantly improving robustness. Tests using seasonal datasets from Dabancheng wind farm (China) show substantial performance improvement (mean absolute error [MAE] reduced by 45.4%, root-mean-square error (RMSE) by 47.6%, p < 0.001), and training time reduced by 12.1%–21.3%. This method offers accurate, scalable forecasting for reliable renewable energy integration.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.