Ashiq Ali , Urooj Azmat , Aisha Khatoon , Kaynaat Akbar , Bilal Murtaza , Ziyi Ji , Urooj Irshad , Zhongjing Su
{"title":"From gene editing to tumor eradication: The CRISPR revolution in cancer therapy","authors":"Ashiq Ali , Urooj Azmat , Aisha Khatoon , Kaynaat Akbar , Bilal Murtaza , Ziyi Ji , Urooj Irshad , Zhongjing Su","doi":"10.1016/j.pbiomolbio.2025.04.003","DOIUrl":null,"url":null,"abstract":"<div><div>Cancer continues to be a significant worldwide health concern, characterized by high rates of occurrence and death. Unfortunately, existing treatments frequently fall short of delivering satisfying therapeutic outcomes. Immunotherapy has ushered in a new era in the treatment of solid tumors, yet its effectiveness is still constrained and comes with unwanted side effects. The advancement of cutting-edge technology, propelled by gene analysis and manipulation at the molecular scale, shows potential for enhancing these therapies. The advent of genome editing technologies, including CRISPR-Cas9, can greatly augment the efficacy of cancer immunotherapy. This review explores the mechanism of CRISPR-Cas9-mediated genome editing and its wide range of tools. The study focuses on analyzing the effects of CRISPR-induced double-strand breaks (DSBs) on cancer immunotherapy, specifically by gene knockdown or knockin. In addition, the study emphasizes the utilization of CRISPR-Cas9-based genome-wide screening to identify targets, the potential of spatial CRISPR genomics, and the extensive applications and difficulties of CRISPR-Cas9 in fundamental research, translational medicine, and clinical environments.</div></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"196 ","pages":"Pages 114-131"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biophysics & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079610725000215","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer continues to be a significant worldwide health concern, characterized by high rates of occurrence and death. Unfortunately, existing treatments frequently fall short of delivering satisfying therapeutic outcomes. Immunotherapy has ushered in a new era in the treatment of solid tumors, yet its effectiveness is still constrained and comes with unwanted side effects. The advancement of cutting-edge technology, propelled by gene analysis and manipulation at the molecular scale, shows potential for enhancing these therapies. The advent of genome editing technologies, including CRISPR-Cas9, can greatly augment the efficacy of cancer immunotherapy. This review explores the mechanism of CRISPR-Cas9-mediated genome editing and its wide range of tools. The study focuses on analyzing the effects of CRISPR-induced double-strand breaks (DSBs) on cancer immunotherapy, specifically by gene knockdown or knockin. In addition, the study emphasizes the utilization of CRISPR-Cas9-based genome-wide screening to identify targets, the potential of spatial CRISPR genomics, and the extensive applications and difficulties of CRISPR-Cas9 in fundamental research, translational medicine, and clinical environments.
期刊介绍:
Progress in Biophysics & Molecular Biology is an international review journal and covers the ground between the physical and biological sciences since its launch in 1950. It indicates to the physicist the great variety of unsolved problems awaiting attention in biology and medicine. The biologist and biochemist will find that this journal presents new and stimulating ideas and novel approaches to studying and influencing structural and functional properties of the living organism. This journal will be of particular interest to biophysicists, biologists, biochemists, cell physiologists, systems biologists, and molecular biologists.