Deciphering the Scattering of Mechanically Driven Polymers Using Deep Learning

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Lijie Ding, Chi-Huan Tung, Bobby G. Sumpter, Wei-Ren Chen and Changwoo Do*, 
{"title":"Deciphering the Scattering of Mechanically Driven Polymers Using Deep Learning","authors":"Lijie Ding,&nbsp;Chi-Huan Tung,&nbsp;Bobby G. Sumpter,&nbsp;Wei-Ren Chen and Changwoo Do*,&nbsp;","doi":"10.1021/acs.jctc.5c0040910.1021/acs.jctc.5c00409","DOIUrl":null,"url":null,"abstract":"<p >We present a deep learning approach for analyzing two-dimensional scattering data of semiflexible polymers under external forces. In our framework, scattering functions are compressed into a three-dimensional latent space using a Variational Autoencoder (VAE), and two converter networks establish a bidirectional mapping between the polymer parameters (bending modulus, stretching force, and steady shear) and the scattering functions. The training data are generated using off-lattice Monte Carlo simulations to avoid the orientational bias inherent in lattice models, ensuring robust sampling of polymer conformations. The feasibility of this bidirectional mapping is demonstrated by the organized distribution of polymer parameters in the latent space. By integrating the converter networks with the VAE, we obtain a generator that produces scattering functions from given polymer parameters and an inferrer that directly extracts polymer parameters from scattering data. While the generator can be utilized in a traditional least-squares fitting procedure, the inferrer produces comparable results in a single pass and operates 3 orders of magnitude faster. This approach offers a scalable automated tool for polymer scattering analysis and provides a promising foundation for extending the method to other scattering models, experimental validation, and the study of time-dependent scattering data.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"21 8","pages":"4176–4182 4176–4182"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jctc.5c00409","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We present a deep learning approach for analyzing two-dimensional scattering data of semiflexible polymers under external forces. In our framework, scattering functions are compressed into a three-dimensional latent space using a Variational Autoencoder (VAE), and two converter networks establish a bidirectional mapping between the polymer parameters (bending modulus, stretching force, and steady shear) and the scattering functions. The training data are generated using off-lattice Monte Carlo simulations to avoid the orientational bias inherent in lattice models, ensuring robust sampling of polymer conformations. The feasibility of this bidirectional mapping is demonstrated by the organized distribution of polymer parameters in the latent space. By integrating the converter networks with the VAE, we obtain a generator that produces scattering functions from given polymer parameters and an inferrer that directly extracts polymer parameters from scattering data. While the generator can be utilized in a traditional least-squares fitting procedure, the inferrer produces comparable results in a single pass and operates 3 orders of magnitude faster. This approach offers a scalable automated tool for polymer scattering analysis and provides a promising foundation for extending the method to other scattering models, experimental validation, and the study of time-dependent scattering data.

Abstract Image

利用深度学习破译机械驱动聚合物的散射
我们提出了一种深度学习方法,用于分析半柔性聚合物在外力作用下的二维散射数据。在我们的框架中,使用变异自动编码器(VAE)将散射函数压缩到三维潜空间,两个转换器网络在聚合物参数(弯曲模量、拉伸力和稳定剪切力)和散射函数之间建立双向映射。训练数据是通过晶格外蒙特卡洛模拟生成的,以避免晶格模型固有的取向偏差,确保对聚合物构象进行可靠采样。聚合物参数在潜空间的有序分布证明了这种双向映射的可行性。通过将转换器网络与 VAE 相结合,我们得到了一个可根据给定聚合物参数生成散射函数的生成器和一个可直接从散射数据中提取聚合物参数的推断器。生成器可用于传统的最小二乘法拟合程序,而推断器只需通过一次就能得到类似的结果,并且运行速度快 3 个数量级。这种方法为聚合物散射分析提供了一种可扩展的自动化工具,并为将该方法扩展到其他散射模型、实验验证和随时间变化的散射数据研究奠定了良好的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信