Catherine M. Megregian, Vasileios Koutsos, Anthony Callanan and Jane R. Blackford*,
{"title":"Icephobicity of Oil-Infused Silicone Elastomer Coatings: Ice Adhesion, Freezing Time, and Room-Temperature Characterization","authors":"Catherine M. Megregian, Vasileios Koutsos, Anthony Callanan and Jane R. Blackford*, ","doi":"10.1021/acsomega.5c0113910.1021/acsomega.5c01139","DOIUrl":null,"url":null,"abstract":"<p >Passive anti-icing coatings are a promising solution to the dangers of ice accumulation on surfaces. We studied plain polydimethylsiloxane (PDMS) and (commercially available) NuSil R-2180 coatings alongside PDMS coatings infused with two molecular weights and percentages of silicone oil. The icephobicity of the coatings was measured via ice adhesion strength and freezing time. 100 repeated deicing cycles were performed, which showed the oil-infused coatings had consistently lower ice adhesion strengths (∼10–20 kPa) than nonoil-infused coatings (∼100 kPa). The nonoil-infused coatings also showed increasing instances of exceptionally high ice adhesion strengths (>650 kPa), reducing the reliability of their icephobicity long-term. Oil infusion did not negatively affect the freezing time of the coatings, and despite decreases in freezing time after 100 deicing cycles, the coatings maintained an improvement compared to uncoated aluminum. Analysis showed adhesion strength is more strongly affected by shear modulus than coating thickness, work of adhesion, or static water contact angle. Wear from the deicing cycles was minimal. Any wear that was present did not significantly affect icephobicity. Oil infusion of elastomer coatings reduces ice accumulation on surfaces and provides a more reliable long-term solution for anti-icing applications.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 15","pages":"15681–15696 15681–15696"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.5c01139","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.5c01139","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Passive anti-icing coatings are a promising solution to the dangers of ice accumulation on surfaces. We studied plain polydimethylsiloxane (PDMS) and (commercially available) NuSil R-2180 coatings alongside PDMS coatings infused with two molecular weights and percentages of silicone oil. The icephobicity of the coatings was measured via ice adhesion strength and freezing time. 100 repeated deicing cycles were performed, which showed the oil-infused coatings had consistently lower ice adhesion strengths (∼10–20 kPa) than nonoil-infused coatings (∼100 kPa). The nonoil-infused coatings also showed increasing instances of exceptionally high ice adhesion strengths (>650 kPa), reducing the reliability of their icephobicity long-term. Oil infusion did not negatively affect the freezing time of the coatings, and despite decreases in freezing time after 100 deicing cycles, the coatings maintained an improvement compared to uncoated aluminum. Analysis showed adhesion strength is more strongly affected by shear modulus than coating thickness, work of adhesion, or static water contact angle. Wear from the deicing cycles was minimal. Any wear that was present did not significantly affect icephobicity. Oil infusion of elastomer coatings reduces ice accumulation on surfaces and provides a more reliable long-term solution for anti-icing applications.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.