Modulation of Gene Expression by Substrate Stiffness via Ubiquitination of Histone H2B by Ubiquitin-Conjugating Enzyme E2A/B

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Mingwei Feng,  and , Fumihiko Nakamura*, 
{"title":"Modulation of Gene Expression by Substrate Stiffness via Ubiquitination of Histone H2B by Ubiquitin-Conjugating Enzyme E2A/B","authors":"Mingwei Feng,&nbsp; and ,&nbsp;Fumihiko Nakamura*,&nbsp;","doi":"10.1021/acsomega.5c0245910.1021/acsomega.5c02459","DOIUrl":null,"url":null,"abstract":"<p >Animal cells adapt to the stiffness of their environment through mechanotransduction, a process in which mechanical signals are converted into biochemical responses, influencing key cellular processes such as growth and differentiation. We identified ubiquitin-conjugating enzymes E2 A and B (UBE2A/B) as mechanosensitive proteins that translocate between the nucleus and cytoplasm depending on force and substrate stiffness. Here, we hypothesized that UBE2A/B nuclear translocation on stiff substrates triggers gene expression via UBE2A/B-mediated ubiquitination of histone H2B lysine 120 (H2BK120). Chromatin immunoprecipitation sequencing (ChIP-seq) revealed distinct DNA fragments bound to monoubiquitinated H2B in cells cultured on soft (0.2 kPa) versus stiff (64 kPa) substrates. We identified 2245 gene regions binding to ubiquitinated histones on stiff substrates and 294 on soft substrates and further integrated RNA-seq and UBE2A/B knockdown data to pinpoint 179 stiff-specific and 18 soft-specific genes. Among these, filamin C (FLNC), leucine zipper protein 1 (LUZP1), and glutamate-rich WD repeat-containing protein 1 (GRWD1) showed higher expression on stiff substrates, with GRWD1 known for its role in cancer progression through cell cycle and gene regulation. These findings highlight how substrate stiffness modulates gene expression via UBE2A/B-mediated H2B ubiquitination.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 15","pages":"15799–15809 15799–15809"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.5c02459","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.5c02459","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Animal cells adapt to the stiffness of their environment through mechanotransduction, a process in which mechanical signals are converted into biochemical responses, influencing key cellular processes such as growth and differentiation. We identified ubiquitin-conjugating enzymes E2 A and B (UBE2A/B) as mechanosensitive proteins that translocate between the nucleus and cytoplasm depending on force and substrate stiffness. Here, we hypothesized that UBE2A/B nuclear translocation on stiff substrates triggers gene expression via UBE2A/B-mediated ubiquitination of histone H2B lysine 120 (H2BK120). Chromatin immunoprecipitation sequencing (ChIP-seq) revealed distinct DNA fragments bound to monoubiquitinated H2B in cells cultured on soft (0.2 kPa) versus stiff (64 kPa) substrates. We identified 2245 gene regions binding to ubiquitinated histones on stiff substrates and 294 on soft substrates and further integrated RNA-seq and UBE2A/B knockdown data to pinpoint 179 stiff-specific and 18 soft-specific genes. Among these, filamin C (FLNC), leucine zipper protein 1 (LUZP1), and glutamate-rich WD repeat-containing protein 1 (GRWD1) showed higher expression on stiff substrates, with GRWD1 known for its role in cancer progression through cell cycle and gene regulation. These findings highlight how substrate stiffness modulates gene expression via UBE2A/B-mediated H2B ubiquitination.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信